
Proceedings of LISA '99: 13th Systems Administration Conference
Seattle, Washington, USA, November 7–12, 1999

O R G A N I Z I N G  T H E  C H A O S : 
M A N A G I N G  R E Q U E S T  T I C K E T S 

I N  A L A R G E  E N V I R O N M E N T 

Steve Willoughby

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 1999 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



Organizing the Chaos: Managing Request
Tickets in a Large Environment

Steve Willoughby – Intel Corporation

ABSTRACT

The Intel Performance Microprocessor Division Engineering Computing (PMD EC) team
consists of 85 systems administrators serving the needs of 2,000 engineers while trying to
manage 7+ terabytes of data and 2,500-3,000 computers. Without some kind of task
management strategy, the needs of so large a group would quickly spread chaos and confusion.
In fact, due to the nature of our relationship with our ‘‘customers’’ (PMD chip designers and
other related employees and contractors), who have strict and demanding requirements of their
computing environment’s features and stability, extra discipline is required just to keep on top of
our issues, and to properly prioritize and execute them.

The EC group receives several hundred customer help requests each week. To organize
and track these requests, ensuring that they are done in the right order, none are forgotten, and
that our customers are kept informed as to our progress, we have evolved a set of tools,
collectively named ‘‘REQADM’’ (for ‘‘REQuest ADMinistration’’). This tool suite allows
customers to submit requests, which get assigned to EC technicians to be worked on, and
eventually brought to a resolved state.

This paper describes the REQADM tools, the organization we evolved to support our
customers, and the lessons learned along the way.

Pre-History

We started with a system similar to Trouble-MH
[3], QMH [7], Req [2], QMH-with-complainers [9],
and Request [8]. We set up E-mail aliases with names
like ‘‘sys-help’’ and ‘‘hot-help’’ (the latter for requests
deemed – by the customer – to be more urgent than
normal). These aliases automatically dumped mes-
sages to MH-style archives, thereby effectively assign-
ing a number to the ‘‘request ticket’’.

On the way into the archive, the ticket got
stamped with some administrative information at the
bottom of the message, which looked something like
this:

XXX Admin Information Follows XXX
NUMBER: 23669
DIRECTORY: sys-help
RECEIVED: Fri Feb 9 11:00:58 1996

The file itself remained in RFC 822 [1] format, with
mail headers intact and the request text and adminis-
trative information as the mail message body.

An EC administrator (called the ‘‘request
dispatcher ’’) would have the task of monitoring the
incoming ‘‘queue’’ of requests. This would be done by
running, as often as possible, a Perl script to search all
the files in the sys-help and hot-help directories, scan-
ning their contents to see if any had been assigned to
an owner yet, and printing out a list of any which had
not.

From this list, the dispatcher would run a Perl
script called assignrequest, assigning each new ticket

to an EC administrator who would ‘‘own’’ the ticket
and be responsible for seeing it to completion. This
would cause a set of text lines to be appended to the
ticket file:

ASSIGNED TO: steve
ASSIGNMENT DATE: Fri Feb 9 ...
ASSIGNED BY: vicki

Now, the user ‘‘steve’’ would be responsible for the
ticket. An E-mail notification would be sent by assign-
request to the original submitter and the new owner.

There was a large set of shell and Perl scripts
used to manage the ticket in their MH-format files:
noterequest to add a note (status update, commentary
or question), reassignrequest to change the owner,
request.nag to send nasty notes to EC admins who had
requests getting old, showrequest to view the contents
of a request, whoserequests to scan the queues to see
who owned what requests, and so forth.

Problems With the Old System

We ran into a few problems over time, which
made us think we should reconsider how we organize
our team and our ticket tracking software.

First of all, since the files were nothing but MH
mail archives, they were vulnerable to a host of
mishaps. Bugs crept into the scripts as we added hack
upon hack, some of which corrupted our ticket files.
For example, if a script had to reassign a ticket to a
new owner, it had to add ‘‘ASSIGNED TO:’’ lines to the
bottom of the file (no lines were ever deleted, so we
always had a record of what happened to a ticket):

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 53



Organizing the Chaos: Managing Request Tickets in a Large Environment Willoughby

ASSIGNED TO: fred
ASSIGNMENT DATE: Fri Feb 9 ...
ASSIGNED BY: steve
NOTE:
I’m assigning this to Fred, since
I’ll be out of the office for a
few days. He’ll be taking over
for me.

Since our scripts relied on being able to use grep(1) to
search for keywords like ‘‘ASSIGNED TO’’ to see who
the current owner was, the new script had to know to
munge the previous assignment(s), so they wouldn’t
be mistaken for the new one:

ORIG-ASSIGNED TO: steve
ORIG-ASSIGNMENT DATE: Fri Feb 9 ...
ORIG-ASSIGNED BY: vicki

As the system features expanded, and the number of
management scripts multiplied, it was inevitable that a
new script would corrupt data that an old script
assumed would be in a certain format.

There was also the risk that user data or admin
comments (see the ‘‘NOTE’’ added to the re-assignment
above) would contain text which would look like an admin-
istrative keyword like ‘‘ASSIGNED’’ or ‘‘CLOSED’’ . As
new keywords were added by new scripts, old tickets
which didn’t break before suddenly caused problems.

There was little possibility for control over who
was allowed to edit tickets, since everyone in the EC
team had to have write access to the files to run MH
commands and ticket-management scripts on them.

And of course, every so often, someone would
forget that he or she was in their ticket ‘‘folder ’’ and
issue an MH command to re-pack the folder, effec-
tively renumbering all the tickets in the system (dupli-
cating numbers of older closed tickets). At other
times, the MH sequence files would get corrupted and
all incoming requests would end up with ticket #0
(effectively going nowhere).

The scripts were getting fragile as their interde-
pendencies (and even their own internal code) became
more convoluted and difficult to maintain. The old
system was collapsing onto itself, and needed serious
redesign.

Customer Relations Issues

Some of the problems we faced with this previ-
ous model were not completely related to the software
tools being used. No computing support group oper-
ates in a vacuum, and the way we interact with our
customers is an important factor to be considered in
evaluating and redesigning a support system.

For one thing, it can be advantageous to have
one’s ticket queue visible to the user community, as I
discovered at the company I worked for prior to Intel,
where I was the sole systems administrator. I imple-
mented a simple ticket tracking system there to help
my users understand how many issues I was dealing

with at any given time. This made them far more sym-
pathetic to the fact that each of their requests were to
be prioritized and some would have to be denied or
deferred for lack of available time to spend on them.

On the other hand, this same feature is a bit of a
double-edged sword. We are also aware that whatever
problem is preventing a customer from getting their
work done is extremely urgent to them, and it may not
seem relevant at that moment that there are other prob-
lems elsewhere in the department that also require
EC’s attention. This can be frustrating to all con-
cerned. We wanted to make sure that the ticket track-
ing system we migrated to would help our customers
see where their issues fit in to the bigger picture. This
would help them understand what priorities we need
to juggle for the common benefit of all. It would also
help EC be constantly aware of what the ‘‘hot’’ issues
are, to be sure we are always working on the right
issues in the right order.

One of the problems with our MH-based system,
which made this situation difficult to resolve, was the
fact that the system only kept a single bit of resolution
for ticket priority: it was either ‘‘normal’’ or ‘‘hot’’.
Since this did not provide us with enough insight to
adequately judge relative priority between tickets,
there were times when EC technicians would mis-pri-
oritize jobs, frustrating our customers, and times when
customers would file too many requests as ‘‘hot’’,
diluting the meaning of that priority.

This is actually a combination of technical and
political (managerial) issues, and we approached solu-
tions along both of these lines, as we’ll discuss below.
From a technical standpoint, however, one thing that
was clear to us was that any new software solution
needed to include features to give the customer more
control to specify true and accurate priority.

Another problem we faced was that there was
some concern that tickets were occasionally closed
before the problems they described were fully
resolved. This was not a major problem for us, but it is
the kind of thing that doesn’t need to happen very
often to become a customer relations issue (particu-
larly if it happens to a key customer).

While there may have been isolated instances of
less-than-careful work on the part of a sysadmin, or a
customer feeling uncomfortable with the actual solu-
tion offered, the chief source of concern here was
communication between EC and the customer. Most
often, when this happened, the real issue was simply
that the sysadmin didn’t understand exactly what the
customer needed, or the customer didn’t fully under-
stand the nature of the problem, and therefore that the
solution offered would really solve it.

This pointed out to us that we needed to imple-
ment a reliable mechanism within our new system
which would formalize – at least – a communication
loop for final approval of a problem’s resolution to be
certain that all was resolved to everyone’s satisfaction.

54 1999 LISA XIII – November 7-12, 1999 – Seattle, WA



Willoughby Organizing the Chaos: Managing Request Tickets in a Large Environment

Some Attempted Improvements
While the new request system was being

designed and written, the computing group made a
number of other attempts to improve our situation.
These included public relations, process, organization
and software improvements.

Customer Surveys

It is important to the success of a support organi-
zation to know how well they are perceived by their
customers to be meeting their needs. The best way we
are aware of to get this information is to ask them for
feedback.

This is not as straightforward as it sounds, how-
ever. Our customers, being designers and engineers,
are usually very busy at work inventing and improving
products for our company. We want to take up as little
of their time as possible to perform ‘‘overhead’’ paper-
work like customer surveys. (We would also like to
take up as little of our time as possible to administer
and analyze these surveys as well.)

The old software had no automated features for
polling customers to see how they felt about our ser-
vice, so our attempts to assess their satisfaction level
were manual and occurred at irregular intervals.

Initially, we tried the ‘‘broadcast spam’’ method,
sending a general survey by E-mail to everyone we
supported, asking them to reply with the answers to
our questions. Only about 5% of our customers
responded to the surveys, and most of them were our
more vocal users, from whom we were already hear-
ing feedback anyway.

Later, we tried the ‘‘barbarian invasion’’ method.
One of our key front-line support people would ran-
domly select a few tickets submitted each week, and
go sit down in the submitter’s cubicle for five minutes
and interview them to get their feelings about how
well their issue was handled. This was more costly (in
terms of time spent) to implement, but ultimately was
more successful in gathering feedback from a wider
sample of our user population.

We eventually decided that our new tracking sys-
tem would need to incorporate some capability to poll
customers who are using it, asking them a few ques-
tions about how well their needs were met. (As of this
writing, these features are being designed for the next
release of REQADM, which should be finished by the
time this paper is actually published and presented.)

New Queuing Theory

While we were designing our new request sys-
tem, there were a number of new ideas proposed and
considered. One of the more interesting ones involved
changing our fundamental queue-management philos-
ophy. The hypothesis was that our ‘‘multiple queue,
multiple server’’ system was inefficient, since every
‘‘server ’’ (i.e., every EC support technician) had his or
her own queue of tickets assigned to be worked on. In
some cases, some tickets in a system administrator’s

personal queue would wait for other tasks to be com-
pleted, when another individual might have been able
to take them on in the mean time. We can liken this to
a grocery store check-out line, where you have to pick
a line and wait in it, although a customer ahead of you
may take longer than you expect, but you can’t just
jump over to a faster line without going to the back of
the line again.

The new system proposed was a ‘‘single queue,
multiple server’’ system. In this system, which we can
liken to a bank teller queue, all the incoming tickets
would wait in a single queue until a support person
was actually ready to work on it. The theory was that
tickets would move faster through the system.

We implemented a script called getrequest,
which support people would use to get the next avail-
able ticket from the incoming queue, and assign it to
themselves. They would then work on that ticket until
it was finished, and run getrequest again.

There were, however, a number of concerns we
had about basing our entire ticket-handling methodol-
ogy on this new concept.

First of all, there will always be a number of
tickets which must wait for some external event, such
as a part arriving from a vendor, or a customer
response, and while that ticket is ‘‘on hold,’’ the next
ticket on the list is grabbed and started. Before long,
individual support members would build up their own
queues of tickets again anyway, and eventually, we
reasoned, they would stop taking incoming tickets
while they tried to clear their personal ticket backlog.

Secondly, we have to recognize that systems
administrators are human beings. We wanted to be
very careful not to establish a ticket-handling system
which relied too much on diligence to manually get as
many new tickets as one could get. We were con-
cerned that there would be too much temptation to
delay grabbing a request if a difficult or unpleasant
request is next in line.

Thirdly, along the same lines of human nature
issues, there are a lot of other tasks systems adminis-
trators need to concern themselves with every day, so
we feared that a natural inclination would be not to get
tickets as often as possible, on the basis that we each
know we are already quite busy with other important
tasks and don’t have free time to take on a ticket yet.
In our original system, where tickets were dispatched
to support people directly, there was more of a ten-
dency to just accept the workload and work all the
tickets in to the day somehow, so more work was actu-
ally accomplished.

However, there were still some interesting uses
for the techniques we discussed for this queuing the-
ory, and this did affect how we assign requests into
certain ‘‘rotation’’ groups, as we’ll discuss below.
Improved Queue Displays

An artifact of the old system was that a lot of
ASCII files needed to be opened, parsed and scanned

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 55



Organizing the Chaos: Managing Request Tickets in a Large Environment Willoughby

in order to view what was in the incoming queue of
tickets (for the ticket dispatcher), as well as an indi-
vidual’s personal queue.

Originally, this was done by a simple shell script
which everyone would run every few minutes, re-
scanning all files every time. An improved version of
this script was implemented which ran continuously in
an xterm window. It would make a pass through the
queue directories every few minutes, but would only
parse and scan files modified since the last scan. Then
the results were displayed in a sorted, color-coded
table, helping a support person locate information
quickly and easily.

Automatic Request Dispatching

To relieve the heavy burden of assigning tickets
to suitable people without overloading them, an auto-
matic system called ‘‘REQMGR’’ was created.

General areas of issue ownership were identified,
and fake usernames created for them with names like
‘‘postmaster ’’ (for mail issues), ‘‘operator ’’ (for back-
ups and restores), ‘‘unixreq’’ (for general UNIX
issues), ‘‘ntreq’’ (for general Windows NT issues), etc.
These owner names were called ‘‘rotations’’, since at
any given time, some subset of our support group
would be ‘‘on duty’’ for their shift on one of those
areas as part of a rotating schedule.

The REQMGR script runs every five minutes out
of cron(8) and scans the active queues for any tickets
which the dispatcher assigned to a ‘‘rotation’’. For
each of those, REQMGR looks at the rotation sched-
ules to see who the current candidates are, and assigns
the ticket to the candidate who is the least loaded with
other tickets.

This has proven to be a great asset, and has been
integrated into the new REQADM system still in use
today.

Looking in Other Directions

At this point we were facing the prospect of hav-
ing to ‘‘reinvent the wheel’’ by redesigning our entire
ticket system. Before going to those lengths, we tried
to investigate other products which might already
work for us.

Remedy AR System
One option was the Action Request System by

Remedy. This was (and still is) a tool being success-
fully used at other Intel sites, and was worth looking at
for our purposes. We set up a Remedy server, dedi-
cated a full-time person to configure and administrate
it, and tried to move our staff and customers over to
the AR System.

While AR System is itself a fine product and
many sites are happy using it, we found that it didn’t
quite fit into the established way we preferred to han-
dle tickets.

From our point of view, we needed a system we
could customize heavily to our department’s needs and

preferences. Further, any deviation in the general
approach to tracking tickets from the old system to the
new one would be a significant stumbling block. Our
customers rightly argued that as they were on tight
development deadlines, a substantial change to the
process by which they entered their tickets, and EC’s
process for resolving them, would impact their overall
productivity and might slip project schedules.

One of the main features our customers abso-
lutely required was the ability to send free-form text
messages via E-mail to a ‘‘sys-help’’ alias, and have
that message automatically enter the ticket system
database. They wanted updates to be mailed to them
every time an action was taken on their ticket. This
further justified a different solution where we could
customize all these interfaces to our liking. (AR Sys-
tem does allow mailed requests, but they need to
adhere to a fairly specific format.)

Helpdesk Institute Conference
We also sent a contingent of our support staff to

a conference sponsored by the Help Desk Institute [5].
They attended talks and workshops specifically ori-
ented to running successful helpdesk centers.

They returned with a number of interesting new
perspectives on help desk center management and
structure, which influenced the redesign of our ‘‘Com-
puting Support Center’’. They also returned with a
report that the conference attendees who were the
most satisfied with their request ticket management
software were the ones who designed their own cus-
tom systems.

This helped us to justify going ahead with the
design and implementation of our own custom system.

This sentiment has been echoed by many others
in the industry, including D. Johnson of Network
Computing Group, who stated, after describing a
model for ‘‘ideal’’ trouble ticket systems, ‘‘It is hard to
imagine that this whole system could come out of a
shrink-wrapped box...’’ While mentioning that com-
mercial RDBMS packages’ screen form and report
generation facilities may be a good start, he found it
‘‘difficult to integrate full trouble ticket functionality
through these systems [6].’’

Design of a New System

We assembled a team, composed of technical
contributors and management from the EC group, to
work out the design of the new system. Over a period
of several weeks of brainstorming, discussion, and
only occasional arguments, the following system was
sketched out, and development began.

In all of this, our goal was to design a trouble
ticket system suited specifically to our needs in Engi-
neering Computing, optimized to our specific support
and business models.

It came as a pleasant surprise when we later
found RFC 1297, NOC Internal Integrated Trouble

56 1999 LISA XIII – November 7-12, 1999 – Seattle, WA



Willoughby Organizing the Chaos: Managing Request Tickets in a Large Environment

Ticket System Functional Specification Wish-list [6]
and compared it against our REQADM system. The
system we developed independently matches almost
the entire wish-list in the RFC. To some degree, this
gave us a feeling of validation that we must at least
generally be on the right track with REQADM. It also
validates the RFC, in that it accurately portrays a large
support organization’s ticket tracking needs.
New Computing Support Structure

Part of our efforts to revamp our customer sup-
port organization involved changing the way we ran
the support center.

Originally, our support model was a
‘‘free-for-all’’ affair, where all tickets submitted by
customers were directly assigned to an appropriate
systems administrator. This was frustrating to EC and
our customers alike, since it tended to overload the
sysadmins who already had full workloads of their
own, in addition to carrying a backlog of one or two
dozen tickets (which just had to be ‘‘worked in’’ to the
day somehow).

We looked at the way computing centers were
being run elsewhere in our company, took the best of
the ideas we found from each group, and created a
system that would work well for our specific needs.

We created a ‘‘Monitoring and Control Center’’
(or ‘‘MCC’’) which would use automated network and
host monitoring tools to proactively watch for trouble,
fixing problems before customers started complaining
about them.

The name of the center was later changed to the
Computing Support Center (‘‘CSC’’), because some of
our customers thought the ‘‘monitoring’’ and ‘‘control’’
words referred to our customers rather than their sys-
tems, and thought it sounded too Orwellian for their
comfort.

To relieve much of the burden of ticket handling
from the bulk of our systems administration personnel,
we staffed the CSC with a full-time crew to be our
‘‘front line’’ tier, answering phones and handling all
the tickets they could. This immediately removed all
tickets not requiring heavily specialized expertise
from the majority of sysadmins. Eventually, the CSC
was able to handle more and more kinds of tickets
directly, as area owners were able to train the front
line to handle common problems and procedures such
as new account creation and mailing list administra-
tion.

To supplement the front line crew, everyone else
in EC (up to and including senior management) agreed
to serve a week-long ‘‘rotation’’ in the CSC. During
this week, they do nothing at all except handle request
tickets that come in, for which the front line people
aren’t trained to handle, such as specific technical
areas of UNIX or NT administration. By having them
in the same physical room (the CSC), everyone on
duty that week maintains a high level of communica-
tion about the current issues being dealt with. As an

additional benefit, the full-time front line people (who
are typically our newer, less-experienced administra-
tors) get hands-on experience watching and helping
the more seasoned administrators handle these issues.
Many of the front-line crew eventually get moved on
to specific systems administration positions based on
their experience gained in the CSC.

To offset the stress and turmoil of dealing 100%
with user requests and telephone calls for a solid
week, once a sysadmin’s rotation week is completed,
they get to leave any unresolved tickets behind for the
next week’s crew to continue working on, and they
don’t have to return for ten more weeks. So the next
ten weeks can be as close to ‘‘uninterrupted’’ as possi-
ble for any systems administrator,1 and more work on
projects and other administrative work can be accom-
plished than was possible when everyone was carrying
that burden all the time.

Life Cycle of a Request Ticket

Requests for work are initiated in a variety of
ways. Most commonly, a customer will have a ques-
tion or will notice that there is something wrong in
their work environment. They will use one of the
interfaces described below to communicate their issue,
directly entering a new ticket into the REQADM
database.

Alternatively, they may call our CSC hotline and
explain their problem to a front-line technician. Unless
it’s a trivial question which can just be answered in a
couple of sentences, the front-line tech will call up a
blank ticket form on their screen and enter a request
on behalf of the customer.

Sometimes, however, one of our myriad system-
monitoring scripts discovers a problem and either
solves it directly or generates a REQADM ticket for a
system administrator to look at.

Once the ticket enters the REQADM system, by
whatever means, it has a ‘‘new’’ status, which means
that it has newly arrived and has not yet been assigned
to a system administrator.

Birth of a Request Ticket

Ideally, we want to prompt the user for specific
information when they submit a ticket into the system.
This has taken a fair bit of work, since in our old sys-
tem customers would simply E-mail a free-form text
message to a designated mail address. The problem
with such unstructured input is evident when you
receive request tickets which look like:

From: j_random@ichips.intel.com
To: sys-help@ichips.intel.com
Subject: FIX IMMEDIATELY

My environment is broken.
Pls fix now.

1In other words, not much, but it’s definitely an improve-
ment.

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 57



Organizing the Chaos: Managing Request Tickets in a Large Environment Willoughby

Naturally, immediately after submitting the ticket, the
user leaves the office for the day, leaving the EC sup-
port group at a loss to even understand the complaint.

From the customer’s point of view, however, the
ease and simplicity of sending a simple mail message
to initiate a ticket is very attractive, so our new system
had to continue to support this.

However, the new system includes interfaces
which we advertise as the ‘‘preferred’’ method for con-
tacting us. The most basic is to simply type request at
a shell prompt. This brings up a data-entry tool as
shown in Figure 1.

Figure 1: Request data-entry tool (‘‘attributes’’ tab).

To avoid overwhelming the user with too many
input fields, the entry form is tabbed ‘‘notebook’’
style. The first tab, which identifies the user and pro-
vides us with contact information, is totally pre-popu-
lated by looking the user up in our corporate employee
database. Most users need only check this page for
accuracy and move on.

The second tab identifies the specific system
being complained about. This section is only needed
for workstation-related tickets and can be ignored
when not applicable.

The next tab allows us to specify the attributes
for this ticket. The request queue is one way we can
organize types of tickets. The vast majority of tickets

submitted go in the default ‘‘request’’ queue. We have
defined other queues for special purpose situations,
such as requests from EC to outside vendors, long-
term projects, TO-DO lists, and so forth. Each queue
has its own rules for agreed-upon resolution time-
frames, and can be separately queried for reports.

The other two fields are of the greatest impor-
tance to the customer submitting the ticket. In the old
system, there was but one way to indicate priority. You
could mail your request to ‘sys-help’ or to ‘hot-help.’
Having only one bit of resolution for ticket priority
proved woefully inadequate. For example, there was
no way to distinguish ‘‘this task is extremely urgent
and the world will end if it’s not done in two hours’’
from ‘‘this task can wait until Friday but is extremely
important that it really be completed at that point, or
the world will still end.’’

To solve this, we prompt for two separate data
points. The first is a four-level ‘‘importance’’ rating:

Urgent: Emergency situation; multiple users are
down; all work stopped.

High: Significant impact to work being done; reso-
lution needed ASAP.

Medium: Default priority – some impact to work;
other work may still progress normally; res-
olution needed when reasonably possible.

58 1999 LISA XIII – November 7-12, 1999 – Seattle, WA



Willoughby Organizing the Chaos: Managing Request Tickets in a Large Environment

Low: Not very important; request for routine
enhancement; random questions.

This indicates how much the issue is impacting the
customer – how important it is to be resolved – with-
out explicit regard to a deadline for completion.

The second data point is a requested due date.
This indicates an explicit point in time when the cus-
tomer requires completion of the request. If none is
specified, a default deadline is calculated based on
importance rating and our contractual SLA with the
customers. (If the customer requests a deadline earlier
than our SLA contract has agreed to provide, it’s not
considered binding, but it’s still useful to know.)

With these two data points, we have a much
more accurate indication of how best to prioritize this
ticket in the list of other tickets we’re dealing with.

Figure 2: Request data-entry tool (‘‘request’’ tab).

The next tab allows the customer to enter free-
form text describing the problem in detail (see Figure
2). To help inspire the customer to specifically men-
tion how this problem might be reproduced in the lab,
we explicitly ask for this on the form.

The input tool can be customized to add special
fields to this tab as appropriate for specific problem
types. For example, if a customer is requesting addi-
tional disk space, it may add fields asking how much

space is needed, on what fileserver, for what group,
etc. Or, if access to a UNIX group is requested, it
could look up the groups the user currently belongs to
and set up a menu of other groups to select from.

The last tab allows us to specify a list of other
people to be copied on all mail correspondence
regarding this ticket.

Once we are finished entering the relevant data,
getting the ticket into the system is only a click away.
REQADM gives us immediate confirmation with the
ticket number for our future reference.

Assignment

Meanwhile, back in the CSC, a front-line techni-
cian is on duty to watch for, and dispatch, incoming
tickets. On his REQADM display, new tickets appear
highlighted at the top of the queue list; see Figure 3.

These tickets can be opened directly from this
list, and examined or edited by the support technician;
see Figure 4.

From the type of problem in the complaint, the
dispatcher assigns the ticket to another support techni-
cian. For example, if the request were about a problem
with a mailing list, it might be assigned to ‘‘unixreq’’.
This is the standard rotation for UNIX requests. This
will then automatically be assigned to the next

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 59



Organizing the Chaos: Managing Request Tickets in a Large Environment Willoughby

available UNIX engineer in the CSC, who will look at
it, and hopefully be the one to actually own the ticket
through to completion.

However, in some cases, the ticket must be
passed up the line to an engineer who owns a specific
area of the environment. For example, if the mailing
list was beyond the capability of the CSC to handle
(perhaps a bug in Majordomo, or a Sendmail
anomaly), it would be re-assigned to ‘‘postmaster ’’,
which the system will automatically send to the cur-
rent Postmaster-on-duty for the day. It could also have
been assigned directly to a specific technician.

Figure 3: Queue display, showing new ticket arrival.

Figure 4: Examining a ticket.

The person or group to whom the ticket is
assigned is known as the ‘‘ticket owner’’ and is
responsible for seeing that it gets resolved.

Here’s where the different queueing models dis-
cussed above come into play. Since some rotations,
like ‘‘postmaster ’’, are staffed with specific people
dedicated to own specific areas of the environment,
the traditional ‘‘multiple queue, multiple server’’
model is an optimal way to supply waiting tickets to
the specific area owners on duty.

For distribution of the bulk of our requests, how-
ever, which are handled by those working in the CSC,
the newer ‘‘single queue’’ model is actually more
effective. This blending of philosophies has proven
quite successful for us.

Priority

Each ticket has a priority, which is on the same
four-level scale as the ‘‘importance’’ rating set by the

60 1999 LISA XIII – November 7-12, 1999 – Seattle, WA



Willoughby Organizing the Chaos: Managing Request Tickets in a Large Environment

customer. However, the importance rating is just an
indicator from the customer. The true queue priority is
set by the systems administrator. Generally, this will
follow the customer’s importance rating, unless EC
disagrees with the customer as to the actual urgency of
the problem.

When the systems administrator views her queue
of tickets she owns, this list is sorted (by default)
according to the amount of time remaining before it’s
due, which is a combination of the committed due
date, priority and contractual SLA expectations.

Status Updates
As the ticket owner works on trying to solve the

request, she will make updates, either as notes to her-
self and other support engineers, or to the customer,
giving progress updates, asking questions, and record-
ing what work was actually done.

These updates are made within the REQADM
system, and are recorded in the permanent history of
the request ticket. The results of each ticket editing
session (which may include multiple actions such as
updating the committed completion date, changing
priority and adding a status note) is summarized by E-
mail to the ticket submitter, owner, and other inter-
ested parties specified in the ticket’s ‘‘CC:’’ list.
Checklists

Depending on the problem type being reported,
the system may also attach pre-defined checklists of
tasks which need to be followed to resolve that kind of
issue. This assists the support engineer, especially if
they are trying to perform an unfamiliar task during
their CSC rotation week.

The items on the checklist must be completed
before the ticket can be marked as resolved.
Holds

From the moment a request ticket enters our sys-
tem, a ‘‘clock’’ starts ticking down the hours until it
comes due according to our negotiated SLA with our
customers. There will be times, however, when we are
waiting for the customer to get back in touch with us
before we can proceed any further.

In these cases, we place the ticket ‘‘on hold’’
which makes it clear to anyone scanning the queues
that EC is not actively working on the ticket until
some external event (usually communication from the
customer) takes place. It also stops the ‘‘clock’’, effec-
tively extending the due date by the length of time the
ticket was on hold.

The next action logged to the ticket automati-
cally removes the hold and returns it to active status.
Resolution

Finally, the customer’s complaint is solved, and
the support engineer is breathing a sigh of relief and
feeling the satisfaction of a job well done. The ticket is
marked as ‘‘resolved’’ and again the SLA clock stops
counting against us (since we’ve completed our
assigned task).

Categorization
At any point up to resolution, the ticket may be

categorized. We have defined a multi-level menu hier-
archy for specifying the root cause of the problems we
see. By tagging each ticket with its root cause cate-
gory, we can generate many interesting reports and
analyze what parts of our environment might need
extra attention.

For our example mailing list ticket, the engineer
resolving the ticket would select the ‘‘mail’’ category,
and the ‘‘mailing list problem’’ sub-category.
Supervisor Approval

In some rare cases, such as when the customer
escalates their issue to EC management due to a dis-
agreement or problem with the ticket owner, an EC
manager must approve the resolution of the ticket.
Normally, this is not necessary.
Customer Approval

This is where things get interesting. One of the
problems we had with our old system was the percep-
tion among some customers that EC personnel were
marking tickets as ‘‘closed’’ without fully solving the
problem at hand. We had to keep track of which cus-
tomers wanted us to never close a ticket without
explicitly checking for their satisfaction first, and
those who were annoyed if we bothered them to get
that approval.

With the new system, we automated a customer
approval process, which has made both sides happy. In
this system, when EC thinks the ticket has been ade-
quately completed, it’s put into a new ‘‘resolved’’
state. The ticket is definitely no longer being worked
on, but it’s not really quite dead yet, either. It exists in
a nether region or ‘‘ticket purgatory’’ for a while, and
keeps its ‘‘resolved’’ status until approved by the cus-
tomer.

At this point, the customer is sent e-mail inform-
ing them that the ticket has been resolved, and asking
them to confirm this by approving the closure of the
ticket. They may do so as simply as typing an X in the
correct box and mailing the E-mail message back
where it came from. Or, they may access the ticket
using an interactive tool and click on the ‘‘approve’’
button.

Once this is done, the ticket becomes fully
‘‘closed’’ and is no longer a concern.

On the other hand, if the customer is still not sat-
isfied, they may indicate that they deny the approval,
and the ticket is automatically placed back to active
status.

If the customer gets busy and doesn’t bother
explicitly approving closure of a ticket, the REQADM
system will automatically close it after a grace period
(currently five days) expires.
Resurrection

If a ticket has been fully closed for a while and
the problem arises again, a customer or administrator

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 61



Organizing the Chaos: Managing Request Tickets in a Large Environment Willoughby

can search for it and reopen the ticket to resume active
work once again.

Interfaces

One of the most important requirements of the
request system is that it be easily accessed from just
about any kind of environment.

Our customers were already used to submitting
tickets via E-mail, so at a minimum that practice
needed to remain possible. The challenge to that, of
course, was to find a way to allow people to include
ticket attributes such as importance and due date
(q.v.), but still allow free-form text for everything else,
and accept mail even if it doesn’t contain special
fields.

The solution we found was to have the mail
receiver accept a ‘‘template’’ which provides special
fields for all those attributes. If a random-text mes-
sage is submitted without the template, a warning is
sent back to the user advising them that they would
get better results by including the template next time,
allowing them to specify all the attributes appropriate
to their issue.

Our preferred method of submitting tickets, how-
ever, is to use the GUI tool described above. For times
when a windowing system is unavailable or undesir-
able, the request program will switch to ASCII mode
and run the user through the ticket creation process,
prompting for each line in series.

Likewise, ASCII versions of all the REQADM
toolset are available when a GUI isn’t an option.

To help facilitate automation of ticket submission
and administration, all functions of REQADM may be
performed using batch-mode commands, without
requiring any user interaction at all.

There are also API libraries for writing Perl or
C++ clients to the REQADM system, to accommodate
any level of future interface desired.

To help remote users who wish to access the
ticket system, or for those who simply prefer such
things, there is also a fully-functional web interface
for submitting and manipulating tickets in the system.

Personal Options

In a customer base as large as ours, there is no
shortage of opinions for how the system should
behave, what mail notices should look like, and every
other aspect of the system.

Rather than try to compromise between every-
one’s desires, and recognizing that different people
mentally organize data differently (and would benefit
from different data presentation formats), we provide
some personal configuration options. Every user has a
‘‘profile’’ maintained by REQADM which determines
how they see mail formatted, whether to page them
when tickets are assigned, and a large number of other
factors.

E-Mail Correspondence
When anything happens to a ticket, mail is sent

to the ticket owner, submitter, and everyone on the
ticket’s CC: list. Each person’s copy is separately
composed and mailed, so that the recipient’s personal
formatting preferences can be applied to their individ-
ual copy.

The mail body always begins with the comments
placed by the person editing the ticket, since those will
most likely be the most important text to consider.
Following that is a summary of the actions taken and
the current status of the ticket.

The mail headers are created in such a way that
if anyone replies to the mail directly, it is sent back to
REQADM itself. This reply is added to the ticket his-
tory and re-mailed to everyone involved in the request.
In this way, we can exchange information with a cus-
tomer or other party, and as far as the customer is con-
cerned, it’s just a simple E-mail conversation.

Nobody has to invoke a special tool to update the
ticket along the way; REQADM just tracks the con-
versation automatically in the ticket history.

Technical Design

The REQADM system centers on a single server
daemon (reqadmd). This server maintains its own
database containing request tickets and personnel
information.

Databases
The server contains its own lightweight embed-

ded database engine2 to rapidly organize and access
request ticket information. The personnel database is
fed from the following sources:

1. The UNIX password file, which provides a map-
ping of user ID number to username. This is help-
ful for REQADM clients to identify who is running
them, and grant an appropriate level of access for
each user, without requiring users to ‘‘log in’’ to
REQADM with yet another password.

2. The ‘‘usertable’’ file. This is a simple ASCII file
mapping username to employee ID number.
REQADM actually uses employee ID numbers to
identify users, since that needs to be a key which
will never (or at least very rarely) change. Experi-
ence has shown that OS usernames and user ID
numbers tend to change too often.

3. Corporate personnel file. This is a simple ASCII
file which provides information about each person,
including phone numbers, mailstop, office location,
and employee ID number. This allows REQADM
to help EC staff find customers when they need to
follow up on a ticket.

Every night, REQADM checks these sources for
any information that needs to be updated. (For

2It actually uses the Athena DBMS library from Software
Alchemy, Inc.

62 1999 LISA XIII – November 7-12, 1999 – Seattle, WA



Willoughby Organizing the Chaos: Managing Request Tickets in a Large Environment

example, if a person moved to a new office, the corpo-
rate personnel file will show their new location, and
REQADM will pull that change into its copy of the
database too.)

REQADM can also be configured to access some
of this information on the fly to allow new people to
use it even if they are not currently in its personnel
database. Specifically, it’ll try contacting:

1. A local LDAP server we have which lists all
known E-mail addresses for all Intel employees
(many people have accounts at multiple sites and
may have mail addresses at each, as well as the
overall ‘‘intel.com’’ domain). This will help
REQADM resolve unknown (to REQADM) mail
addresses to employee ID numbers, which it can
look up further.

2. A local server providing the above-mentioned cor-
porate personnel information. REQADM will use
this to create personnel records in its database for
new people when first encountered.

Whichever combinations of the above files and
services reasonably apply to other sites’ environments
can easily be set up to support REQADM.

Additionally, the reqadmd server accesses the
tickets stored in human-readable MH-format ASCII
files (in pre-2.0 versions; after 2.0, REQADM stores
all tickets in the database but writes out ASCII recov-
ery files in quickly-parsable machine-friendly ASCII
formats, Just In Case. Normally, though, those files
are written but never read by REQADM 2.x). The
server is the only process allowed to directly touch
either the database or ASCII files; as such, it arbitrates
security and locking amongst the request system users.
Clients

Everything else the sysadmins and customers
encounter is a client program or script which contacts
the reqadmd server via TCP/IP sockets, requests it to
perform queries or modifications of tickets, and
reports back to the user.

Clients exist for submitting tickets, setting per-
sonal look-and-feel preferences, browsing the queues
and editing request information.

Most of the clients respond to whatever environ-
ment they sense they are being run from (GUI, ASCII,
WWW, or batch) and interact with the user appropri-
ately.
Supporting Scripts

A number of scripts support the operation of
REQADM. The most interesting of them are listed
below:

REQMGR manages automatic assignment of
tickets to sysadmins who take turns being ‘‘on duty’’
for specific tasks such as postmaster, webmaster, and
account creation. It checks schedule files to see who
the candidates are to receive each ticket, and then
checks the REQADM server to see who has the small-
est active request load.

Reqadm-mail-receiver takes all the incoming E-
mail (whether new incoming tickets or mailed
responses to existing tickets) and invokes the other
clients necessary to get the mailed information into
REQADM.

Reqadm-auto-close runs as part of the nightly
maintenance procedures, finding all tickets which
have been marked as ‘‘resolved’’ but have not been
touched for a designated number of days. These are
considered to be abandoned by the customer, who has
not responded to approve or deny the resolution.
Those tickets are then marked ‘‘approved’’.
Extension APIs

In order to allow metrics-gathering scripts and
other new clients to be written as desired, a compre-
hensive C++ API library is provided allowing virtu-
ally any new facility to be added to the system.

A reasonable subset of those functions are avail-
able in a Perl module, allowing scripts to access the
REQADM server. We make significant use of this
module for our statistical analysis scripts.
Implementation Notes

The core of REQADM (server, clients, libraries)
consists of nearly 42,000 lines of code (mostly C++,
with a bit of Tcl/Tk and C as necessary). This is sup-
plemented by about a dozen shell and Perl scripts
responsible for the ongoing maintenance tasks.

It has been built successfully on Solaris, AIX,
HP/UX, SunOS, Linux, FreeBSD and Windows NT.
(Currently the server must be SPARC Solaris or
FreeBSD/i386.)

Phase I: Gradual Integration

The REQADM program took almost a year to go
from initial design committee meetings to the com-
pleted version 1.0 release. At that point (early 1998),
we were ready to cut over from the old MH system to
the new REQADM server.

We needed to be extremely cautious, however,
since the request ticket system is so critical to our
department. In case of trouble, we needed a fast
escape route to switch the old system back online.

The major consideration to that end was the deci-
sion to keep the old MH-style file format from the old
system. REQADM was designed to read and write the
old-style files, and maintain an ‘‘overview’’ database
tracking the status and ownership of the tickets in the
discrete disk files. This allowed for fast database
queries and reports of this overview data, but if the
actual contents of a ticket needed to be examined, the
disk file had to be opened and its text format parsed.

In this way, if REQADM failed in some major
way, we could simply turn off the REQADM server
and continue using our old scripts on the same data
files, with no loss of information or stoppage of work.

We began with an ‘‘alpha test’’ phase internally
within the EC group. We started a new REQADM
server without an existing set of tickets, and ran

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 63



Organizing the Chaos: Managing Request Tickets in a Large Environment Willoughby

scripts to randomly generate a few hundred request
tickets. These tickets contained instructions for the
owner to perform 6-8 randomly chosen tasks within
the request system, such as ‘‘Assign this ticket to (ran-
dom other person)’’, or ‘‘Change the priority to
‘urgent’’’. We used these tickets to further test the
REQADM system, as well as to train our support staff
on the new interface they’d be using.

Once we were satisfied with that, we cleared out
the random tickets and asked our support staff to use
REQADM for all internally-generated tickets. We also
asked a select group of customers to try using
REQADM for all their new issues as well. This gave
us more ‘‘real world’’ testing of REQADM, while
allowing us to still use the old system with most of our
existing customers.

To make this work, we hacked REQADM to start
issuing new request tickets at ticket number 70,000,
which was a significant gap from the largest ticket
number in the MH system (which was still under
60,000 at the time).

When we believed REQADM was ready for pro-
duction use, we ran a Perl script to import all the MH-
style tickets into the REQADM database (adding them
to the higher-numbered ones which were already there
from the customer testing period), and told the cus-
tomers that REQADM was the way to submit tickets
from then on.

We also provided them with a step-by-step tuto-
rial for each of the customer interfaces to REQADM.
This tutorial allows them to submit sample tickets to
an ‘‘autotest’’ queue, which is ignored by humans, but
monitored by a cron script which will pretend to be a
sysadmin working on their ticket, doing random things
to it and eventually closing the ticket. This lets them
figure out how the system works without unduly
annoying any of the EC staff.

REQADM was a success and the emergency
back-out plan never had to be executed.

Phase II: Taking the Plunge

As this paper is being written, we are beginning
implementation of REQADM version 2.0, which will
include quite a number of improvements to the system
described here. By the time you read this paper, 2.0
should be completed and ready for release.

One of the major changes will be to abandon the
old MH format, and to store all ticket information
completely inside REQADM’s database. This will
allow us to search for tickets by text content as well as
attribute and subject information, and will improve the
speed of handling tickets.

Once we do this, we won’t have the ‘‘safety net’’
of falling back to the MH scripts, but since using
REQADM for over a year and a half, we don’t believe
that will be an issue any longer. The 2.0 system will
have its own internal recovery systems to help prevent

loss of data in the event of database corruption or
other problem.

Success of REQADM

Our customers and support staff have been very
happy about the improvements REQADM has pro-
vided to our ticket handling process in the PMD EC.
We’ve been gratified to have been asked by other Intel
groups to give them copies of REQADM to use for
their own ticket management.

According to programming folklore, one of the
marks of success for a software system is when some-
one successfully applies it to a problem which the pro-
grammer never anticipated. This happened for
REQADM when one of our product testing groups
decided to adopt REQADM to track downtimes for
their chip- and board-tester systems, and for keeping
maintenance information with the vendors who supply
those systems. By keeping the REQADM tickets’
timestamps updated accurately, and by asking for just
the right metrics from the REQADM server, they now
are able to get automatic mean-time-between-failure
and mean-time-to-fix statistics for their test equip-
ment, in addition to the normal usage of REQADM to
track active issues with their staff and vendors.

Fringe Benefits

The EC group has also been able to leverage
REQADM to do more for us than just track requests
for help from our customers.

For example, we created a queue of requests the
EC group places with outside vendors. Now when we
call (for example) Auspex to get a new fileserver part,
we can create a ticket and assign it to our Auspex sales
or service representative. The vendor can use the mail
interface to REQADM to add updates and other infor-
mation to the request ticket along the way, giving us a
permanent record of service for our systems. When
we pull a service ticket for viewing in REQADM, we
can ask for all other tickets filed against the same sys-
tem, and see trends that might need to be discussed
with the vendor.

Metrics Gathering

One of the most important topics for EC man-
agers to consider is how to keep track of the general
issues the EC group is facing, and how to reduce the
number of backlogged tickets (by getting our teams to
work more efficiently), and to reduce the number of
tickets coming in to the system (on the theory that if
we proactively improve the quality of system services,
the customers won’t have so much to complain about).

In order to do this, they need real data to work
from. We’ve been gathering various statistics on
weekly numbers of request tickets opened, closed,
backlogged, late, and so forth, which get translated to
various graphs and charts for managers to look at and
discuss in their meetings.

64 1999 LISA XIII – November 7-12, 1999 – Seattle, WA



Willoughby Organizing the Chaos: Managing Request Tickets in a Large Environment

The system also tracks the ‘‘categories’’ assigned
to each ticket by the ticket owner. These categories
show the root cause of the problem which prompted
the ticket to have been entered in the first place.

The categories are organized into multiple tiers.
At the outermost level we might have a list of cate-
gories like:

• Account Administration
• Fileserver/Disk Management
• E-Mail
• Network/Internet
• Performance Issues
• Printing/Plotting
• User Environment

Under each of those are sub-categories and sub-sub-
categories. For example, under ‘‘E-Mail’’ we might
find:

• Bounced, Pilot Error
• MTA Problem
• MUA Problem
• Bogus .forward File
• Spam/Abusive Mail

We generate reports at the top level each week
(‘‘How many mail requests did we get? How many
network problems?’’). We also developed an interac-
tive Request Analysis Tool (‘‘RAT’’) on the web which
allows one to browse these statistics, opening up a
top-level category to see why there were so many tick-
ets of a particular type. From these statistics, we can
recognize problems in the environment early enough
to reduce their impact.

Multi-Site Use

Our support group is divided between geographi-
cal locations, with some of us in Oregon and others in
Washington. While, for the most part, the Oregon and
Washington teams don’t tend to work together on indi-
vidual tickets, there is still a need to have our request
systems accessible to each other.

We have had reasonable success having those at
remote sites run clients which connect to our server,
giving them access to our request tickets. However,
this doesn’t work well when the wide-area network
between Oregon and Washington goes down.

We’re developing a new protocol which will
allow two or more REQADM servers to communicate
between themselves, passing information occasionally
between them. This will allow our Washington team to
maintain their own server and local request queues.
When they get a ticket that belongs to the Oregon
team, they can just click on a ‘‘cross-site transfer’’ but-
ton and the server will move the ticket to the Oregon
server. This feature will also allow people at either site
to browse (but not necessarily modify) queues at
remote sites.

Future Development

There is always room to improve any system,
and we’ll probably never be 100% finished with
REQADM, as long as people keep asking for new fea-
tures.

One thing we’ve considered is a tie-in to some
kind of expert system or knowledge base. We’ll proba-
bly do this in two places. First, when the customer is
submitting a ticket, it would be helpful to have the
system refer them to information and/or URLs offer-
ing advice for the kind of problem being submitted.
This may even help reduce the number of incoming
tickets.

Second, on the support side, we would like to
expand REQADM’s capability to cross-reference past
tickets to see what was done previously to a ticket, as
well as accessing a knowledge base of information
about all areas of our environment.

We’re also working on setting alarms for certain
kinds of events (e.g., to warn when a ticket is about to
become due), setting time-outs for the ‘‘on hold’’ fea-
ture, etc.

The idea of replicated backup servers for
REQADM is also appealing, and we may pursue that
at some future point.

Glossary

CSC Computing Support Center. The physical
location where front-line and second-tier
personnel sit during their week-long rota-
tion. Phone support is handled there, as well
as walk-in traffic.

EC Engineering Computing. The overall team
of systems administration staff for our engi-
neering department of customers. Contrast
with IT.

IT The corporate Information Technology
group. The computing support organization
for everyone else in the company not served
by Engineering Computing.

MCC The Monitoring and Control Center. The old
name for the CSC, before someone thought
it sounded too Orwellian.

POD Affectionate term for the CSC; see [4].

queue A collection of request tickets. The separate
queues help organize tickets into broad clas-
sifications.

rotation A ‘‘group’’ which may be assigned a ticket.
Through some manual or automatic means,
a ticket is then dispatched out of that rota-
tion to the next available real person who is
serving a duty rotation for that kind of issue.

SLA The Service Level Agreement between EC
and our customers. This specifies the
expected timeframes wherein tickets should

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 65



Organizing the Chaos: Managing Request Tickets in a Large Environment Willoughby

be resolved, and what services we are will-
ing to support, in what manner.

References

1. David H. Crocker, ‘‘Standard for the Format of
ARPA Internet Text Messages,’’ RFC 822, 1982.

2. Rémy Evard, ‘‘Managing the Ever-Growing To-
Do List,’’ Proceedings of the Eighth USENIX
Systems Administration Conference (LISA VIII),
USENIX, San Diego, CA, 1994.

3. Tinsley Galyean, Trent Hein, and Evi Nemeth,
‘‘Trouble-MH: A Work-Queue Management
Package for a >3 Ring Circus,’’ Proceedings of
the Fourth USENIX Large Installation Systems
Administration Workshop (LISA IV), USENIX,
1990.

4. William Goldman, The Princess Bride, 25th
Anniversary Edition, Ballatine, 1998.

5. Help Desk Institute, http://www.HelpDeskInst.
com.

6. D. Johnson, ‘‘NOC Internal Integrated Trouble
Ticket System; Functional Specification Wish-
list,’’ RFC 1297, 1992.

7. Bryan McDonald, ‘‘QMH: A Problem Tracking
System,’’ Proceedings of the World Conference
on System Administration and Security, 1992.

8. Joe Rhett, ‘‘Request v3: A Modular, Extensible
Task Tracking Tool,’’ Proceedings of the Twelfth
Systems Administration Conference (LISA ’98),
p. 327, USENIX, Boston, MA, 1998.

9. Elizabeth D. Zwicky, ‘‘Getting More Work Out
Of Work Tracking Systems,’’ Proceedings of the
Eighth USENIX Systems Administration Confer-
ence (LISA VIII), USENIX, San Diego, CA,
1994.

Author Information

Steve Willoughby is a Senior Systems Program-
mer at Intel’s Performance Microprocessor Division,
where he has been for the last six years playing (at
various times) Auspex Administrator, Postmaster,
Security Czar, Perl Programming Teacher and maker
of internal software applications.

He discovered Version 7 UNIX while in high
school (ca. 1980) and, apart from brief forays into
VMS in college and failed attempts to hide from a
couple of other operating systems, he’s been spending
most waking hours since then tinkering on UNIX in
one form or another, either writing software or admin-
istering systems.

He lives in the Portland, Oregon area with his
wife, son and assorted small furry creatures. He keeps
a vintage Altair 8800 as a pet. In his spare time, he
tries to avoid running a MUD system (http://
www.rag.com). He can be reached by E-mail at
<steve@ichips.intel.com>.

66 1999 LISA XIII – November 7-12, 1999 – Seattle, WA



Willoughby Organizing the Chaos: Managing Request Tickets in a Large Environment

APPENDIX

This appendix shows a comparison between REQADM and other popular free ticket tracking systems.

This information was taken from the documentation accompanying the following packages. Not all features
were clearly and thoroughly documented in each case, so this table may not be 100% complete. Time did not allow
for us to install and extensively use each package for an in-depth comparison.

REQADM Version 1.2, with anticipated features which should be completed when this paper goes to press.

RFC 1297 The mythical ticket tracking system described in the RFC is compared with the real features of the
existing tools.

Gnats Version 3.2 from ftp://prep.mit.edu/pub/gnu/gnats/gnats-3.2.tar.gz

Netlog Version 2.4 from ftp://ftp.jvnc.net/pub/netlog-tt-2.4.tar.Z

PTS Version 1.1a2 from ftp://ftp.x.org/contrib/pts-1.1a2.tar.gz and http://www.halcyon.com/dean/pts/pts.html

Req Version 1.2.7 and tkreq version 1.10 from ftp://ftp.ccs.neu.edu/pub/sysadmin/*

RUST Version 1.0b6pl2 from ftp://ftp.eng.utah.edu/pub/sys-admin/rust/rust-1.0b6pl2.tar.gz

Request Version 3 from http://www.noc.isite.net/software/Request/ was not compared since the web site did
not contain an active link to obtain a copy of the software, and did not have documentation on line to describe all
features in depth. However, from what information we have, it appears to be comparable to the other systems shown.

Feature REQADM RFC 1297 Gnats Netlog PTS Req RUST

General Features
Running history in ticket yes yes yes yes yes yes yes
Auto-timeout for escalation no yes no no yes no no
Feedback to net monitors * yes no no no? no? no
Fixed-input field templates yes yes yes no yes no? no
Free-form text fields yes yes yes yes yes yes yes
Problem classes or queues yes yes yes no yes no yes
Assisted entry for fields yes yes yes yes yes no? no
Help screens in tools yes yes no? no ? no? no?
Pass tickets to other site yes yes no no no no no
Integrated with expert sys no yes no no no no no
API for ad hoc queries/rpts yes yes no no yes no ?
API for custom clients yes yes no no yes no ?
Refer to old closed tickets yes yes no? no yes yes? yes?
Re-open a closed ticket yes no no? no yes yes yes
Database used custom N/A no no custom no no
Merge duplicate tickets yes no no no no yes yes
Put ticket ‘‘on hold’’ yes yes no no no no no
Support Rotations yes no no no no no no
Auto-assign to Rotations yes no no no no no no
Queue Displays
Auto-updating ticket disp. yes yes yes no no? no no
Select view by attributes yes yes yes no no? yes yes
Sortable by owner/submitter yes yes no? no no? no no
Sortable by ticket priority yes yes no? no no? no no
Sortable by queue/number yes yes no? no no? no no
Shows ticket status/age yes yes yes no yes yes yes
Customizable displays yes no no no no no? yes
Phonetic subject searches yes no no no no no no
Security
Admin functions restricted yes yes yes yes yes no? yes
Per-field ACL/permissions no yes no no no no no
Admin-eyes-only notes yes yes no? no no no no
Customers can note tickets any * no no no any any
Customer approval for close yes no no no no ** **
Admin approval for reopen no no no no yes no no

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 67



Organizing the Chaos: Managing Request Tickets in a Large Environment Willoughby

Feature REQADM RFC 1297 Gnats Netlog PTS Req RUST

Ticket Attributes
Customer priority levels 4 yes 3 no no 3 3
Support priority levels 4 yes 3 no no no no
Time/date submitted yes yes yes yes yes yes yes
Time/date resolved yes yes yes yes yes yes yes
Time/date last updated yes yes no? no? no? yes yes
Location/system of user yes yes no no no no no
Machine/network involved yes yes no no no no no
One-line problem summary yes yes yes yes yes yes yes
Next action to be taken yes yes yes yes yes yes yes
Ticket owner (comp support) yes yes yes no no? yes yes
Time spent working on prob yes yes no no no no yes
Time ticket took to close yes yes yes yes yes yes yes
Supervisor approval of work no yes no no no no no
Escalation to non-EC or mgt no yes no no no no no
SLA due-date for prob type yes yes no no no no no
SLA due-date for priority yes yes no no no no no
Ticket status levels 8 yes 5 2 3 4 3+
Committed (manual) due date yes no no no no yes yes
Requested (manual) due date yes no no no no no no
Reports
Summarize by network/host yes yes no no no no no
Summarize by root cause yes yes no no ? no no
Summarize by date yes yes no yes ? yes yes
Mean Time Between Failure yes yes no no * no ?
Mean Time to Repair (work) yes yes no no no no ?
Graphical chart output yes yes no no * no no
Environment
Runs w/native window system yes yes yes yes yes yes yes
Mult. open ticket windows yes yes yes yes ? no no
Auto. tools open tickets yes yes yes yes yes yes yes
Pulls employee info from db yes yes no no no no no
Pulls host/net info from db yes yes no no no no no
Query env. when ticket open yes yes * no * * *
E-mail notification/updates yes yes yes no yes yes yes
Mail traffic logged to tkt yes yes no? no no? yes yes
Batch updates w/o using GUI yes yes yes no no? * yes
Failover to backup CPU/db no yes no no no no no
X GUI interface available all N/A no? no all all all
NT GUI interface available all N/A no? no no no no
Web interface available all N/A no no all no no
E-mail interface available sub N/A sub no no? sub sub
ASCII interface available all N/A all no all all all
Curses interface available no N/A no yes no no no
Batch cmd interface avail. all N/A all no no all all
EMACS interface available no N/A yes no no yes no?
Free-form text submissions yes N/A no yes yes yes yes
Assisted submissions yes N/A yes yes yes no? no?
Users’ custom preferences yes no no no no no no
Mailed new-ticket receipt yes yes yes no no? yes yes

* Possible to add by writing a custom script in Perl or other language.

** Possible by using existing features of the tool, but those features may not have been designed specifically (or
exclusively) for that purpose.

all All major features are available in this mode.

sub A subset of features are available in this mode (e.g., you can submit new tickets by mail, and can add commen-
tary to them, but can’t otherwise administrate them via mail alone).

68 1999 LISA XIII – November 7-12, 1999 – Seattle, WA


