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ABSTRACT

This paper describes our initial steps towards self-configuring mechanisms for automating
high-level security and service policies in dynamic networks. We build on the NESTOR system
developed at Columbia University for instrumenting and monitoring constraints on network
elements and services such as DHCP, DNS zones, host-based access controls, firewalls, and
VLAN switches.

Current paradigms for configuration management require that changes be propagated
either manually or via low-level scripts suited to static networks. Our longer-term goal is to
provide fully automated techniques which work for dynamic networks in which changes are
frequent and often unanticipated. Automated approaches, such as ours, are the only viable
solution for global and dynamic networks and services. In this paper, we focus on one specific
scenario to illustrate our ideas: providing transparent and secure access to selected services from
a mobile laptop. The challenge is that reconfiguration must satisfy the security policies of two
independent corporate networks.

Introduction

As the technologies to deploy new internet ser-
vices have progressed rapidly, the tools to manage
them have lagged behind. This is especially true of
security management. Sophisticated services are often
vulnerable to unanticipated and sophisticated attacks.
With inadequate management tools, the tendency is to
deploy new services in a restricted manner that limits
their usefulness.

Existing tools for static security are inadequate to
meet the current demands of user mobility and diver-
sity. These tools require frequent, expensive, and
error-prone reconfigurations that may make legitimate
access cumbersome and time consuming. This hap-
pens because the primary first-generation technique
for reconfiguration – low-level scripting – cannot han-
dle rapid change easily. There are no tools to verify
the correctness or composability of scripts, properties
critical for security.

As a result, unpredictable security gaps can
appear during changeovers. In a dynamic network
with frequent upgrades, this uncertainty becomes
untenable and leads to over or under-management of
resources. The task of systems administration is
increasingly human-intensive and administrators often
must make decisions with little or no basis to justify
their choice. The need for automation of configuration
management is immediate. History also tells us that
any security mechanisms that obstruct the legitimate
use of services become unpopular and will eventually
be bypassed. Balancing the demand of users for new
services with the security vulnerabilities that the new
services cause is an important and challenging prob-
lem.

The long-term goal of our project is a manage-
ment platform that automates both the management of

security and service availability. This paper describes
our approach and initial steps towards this goal. We
demonstrate our solution with a simple scenario in
which a user moves from one network to another
while expecting transparent access to services. This
example illustrates the complexities of reconfiguring
networks which are independently administered. It
should be noted that while we describe our solution
for one specific example in this paper, our approach is
more general and geared towards the larger problems
of service and security management. The scenario in
this paper is a vehicle to illustrate our ideas; indeed,
we do not address every conceivable aspect of the sce-
nario.

We describe how we use the NESTOR configu-
ration management system prototyped at Columbia
University to manage security requirements. We also
discuss our plans for further work towards self-config-
uring network systems that maintain high-level secu-
rity and service policies dynamically.

The Scenario

Jane Consultant, who is employed by Corpora-
tion A, is visiting a client in Corporation B. During
her meeting, Jane realizes that she needs to access
files in her home directory which have not been
copied onto her laptop. When plugged into her home
network in A, Jane simply clicks an icon on her desk-
top to access her files. What are her choices while
plugged into B’s network? She can establish a slow
but potentially insecure modem connection to Corpo-
ration A (over a wireless connection for example, or
perhaps the phone call is routed over the Internet).
Alternatively, she can plug her laptop into an ethernet
port within Corporation B; assuming she gets con-
nected at all, it will likely be a window-less connec-
tion to B because Corporation A may not open X
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services in its network to hosts outside. Neither
method offers access comparable to what Jane would
get within her home network.

What makes the problem more challenging is
that the two networks are separately administered,
with independent security policies. For example, Cor-
poration A might filter certain services when the user
is plugged into a remote network. Corporation B
might require that guest machines not be able to send
or receive traffic directly from any machine within B’s
network, and that guest machines may only access
remote VPN nodes. If there is a way to provide access
without violating either company’s policy, we would
like all necessary reconfigurations to be automatic and
not require manual intervention. Of course, if there is
no way to provide access without violating one secu-
rity policy or another, Jane cannot be provided this
service. The difference in our approach is that we have
a language designed to express these concerns explic-
itly at a high level as policies and mechanisms to sup-
port the semantics of these policies by appropriately
reconfiguring the network.

A number of configuration changes are neces-
sary to provide Jane access when the security policies
allow it. In our example, some of the changes involve
the Dynamic Host Configuration Protocol (DHCP) [3]
server, switches and firewalls in B, and firewalls, file
servers and encryption protocols within A, and
decryption in Jane’s laptop.
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Figure 1: NESTOR Architecture.

Today, most of these configuration changes must
be done manually by systems administrators. There is
no standard method for performing dynamic reconfig-
uration of services or network elements in response to

changes in the network. Script-based solutions are
usually highly dependent on network topology and
service/element configuration mechanisms which dif-
fer across vendors and even between different versions
of the same product. Scripts are frequently highly cus-
tomized and therefore non-transparent and non-univer-
sal.

Moreover, a single change in the network can
require changes in multiple scripts, reducing reliability
and further worsening the maintenance overhead.
Errors in scripts can result in inconsistent network
configuration states, and manual recovery made diffi-
cult by lack of logging. Moreover, each script must
carefully enforce exclusive access to the respective
configuration repositories. Another drawback with the
lack of centralized meta-information description and
repository means that each script must rediscover
information, for example network topology, that is not
directly instrumented.

Our solution is the first step towards standardiz-
ing and automating these configuration changes. First,
using NESTOR we build a universal platform to treat
network elements in a vendor-independent way. Sec-
ond, by automating implementation of high-level pol-
icy we allow the SA to implement custom policies
(which is what she wants) without having to write
low-level scripts (which she does not want). The plat-
form is open so that SAs can change existing models
or add new ones as necessary to support new policies.
Auxiliary services such as logging can also be dealt
with at the policy level. The most important aspect of
our approach is to ensure that the network remains (at
a low level of granularity) in a consistent state; we
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achieve this with transaction-like semantics for opera-
tions on configuration states.

Our Approach
We use the NESTOR system [16] developed at

Columbia University to build an experimental proto-
type for our experiments. NESTOR is a configuration
management system that automates most of the net-
work configuration tasks. Constraints between config-
uration parameters model interdependence between
different subsystems; NESTOR provides support for
network-level instrumentation and monitoring of con-
straints to provide predictable and error-free opera-
tions.

In our work we use constraints to also capture
security policy. We focus specifically on enabling
transparent and secure access in the scenario described
in the previous section. This paper describes briefly
the architecture of the NESTOR system, how we use
NESTOR to build our prototype, how constraints are
modeled and managed to provide secure transparent
access in a fully automated manner. Future reports will
detail progress on high-level security and service pol-
icy specifications, compilation to NESTOR con-
straints, and experiences with larger systems.

NESTOR Architecture

The NESTOR project underway at Columbia
University provides a management platform for com-
mon network elements. The novelty of the NESTOR
manager lies in the fact that it not only automates SA
actions but also maintains consistent network state.
Consistency is guaranteed by enforcing constraints
between various network elements to ensure that
change propagation is done correctly. A two-phase
commit protocol allows all network changes to be
viewed as distributed transactions with rollback fea-
tures. Our next prototype will handle cases where
some network elements do not allow undoing changes.
For a general discussion of NESTOR and the details
of its architecture please see [16].

Figure 1 shows an overview of the NESTOR
system. Systems administrators manage network oper-
ations through a unified object-relationship model
where managed network elements and services are
represented as objects interconnected via a network of
relationships. Operationally, the object repository is
accessed through the NESTOR Directory Interface
(NDI). The interface provides methods for initiating
transactions and manipulating repository objects
(lookup, create, update, delete). For example, in order
to change the name of the host, a systems administra-
tor will look up the matching host object in the reposi-
tory, and modify its name attribute. All such updates
are performed in the context of a transaction.

Constraints associated with the affected objects
are evaluated in order to assure consistency. A con-
straint is composed of two parts: a declarative predi-
cate and an imperative action. The predicate is

evaluated by the constraint manager whenever a
change is attempted that may affect its value. When a
predicate is violated, the corresponding action associ-
ated with the predicate is executed. If the action does
not succeed (perhaps because the element being con-
trolled is not responding) the error will propagate so
that the system registers the fact that the constraint has
been violated and takes appropriate actions to satisfy
the high-level policy. Actions have priority levels to
manage the relative order in which multiple actions
must be executed.

Constraints are first-class objects and are distin-
guished from other modeled elements. In the host
renaming example above, a constraint will state that
all host names must be unique. The predicate associ-
ated with the constraint will check whether the new
name will maintain this uniqueness property. If not,
the action will reject the change and may indicate the
error on the SA console. If the name change is
accepted, the system launches a sub-transaction that
may in turn cause other changes as necessary which
may launch sub-transactions themselves. In order for
the transaction to be committed, the system must reach
a consistent state where all constraints are satisfied
and all sub-transactions are complete. Otherwise the
transaction is aborted and the changes discarded.
Unbounded transactions are caught by time-outs and
aborted.

Deploying NESTOR
To deploy NESTOR the systems administrator

first models the key resources in the network as
classes, in the sense of object-orientedness. A model
class consists of data members and objects that
describe the state and interfaces of the network ele-
ment. In addition, the model has constraints which
define the relationship with other network elements. A
detailed example is available in the Network Model
section. It is important that the model include all the
information necessary to implement the stated poli-
cies. Examples include network elements (switches,
routers, workstation, servers), network services
(HTTP, NFS, NIS, YP, Windows Domains), and
optionally policy objects such as a security manager.
Common elements models currently available in
NESTOR include: Linux (RedHat SysV style configu-
ration) workstation which instruments /etc/* configu-
ration information, SNMP MIB II (to instrument
WinNT workstations) and Generic Cisco IOS adapter.
Service models in NESTOR include Apache HTTPd,
Linux NFSd, ISIC DHCPd, LDAP adapter, Java JNDI
and, through the JNDI adapters, YP/NIS access. For
the purpose of this work, models of firewalls and other
security-related objects were also created. Constraints
may be defined at the time of modeling, or added
incrementally to the system. Although some con-
straints may refer to attributes on a single object, most
will navigate the object relationships to establish con-
straints over multiple objects. Examples of modeling
and constraint languages are given in the next section.
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The next step is to populate the NESTOR reposi-
tory with model instances. This is done either manu-
ally, or in combination with the network topology dis-
covery manager. The topology manager is typically a
process executing on a NESTOR server or, possibly,
some other network node which scans an IP network
for active nodes, and attempts to discover their type
(host, router, etc), and services (HTTP, NFS, X11,
etc). This discovery process is successful to the extent
that the topology manager can only infer information
based on SNMP MIB values, port scans, and possibly
remote shell commands. For example, a web server
may be discovered, but it may not be possible to
instrument its configuration unless an appropriate
agent (SNMP HTTPd MIB or NESTOR) is installed.

Transactions in NESTOR

Repository transactions are overseen by the
transaction manager using a two-phase commit proto-
col to maintain the transaction properties of atomicity,
consistency, isolation, and durability (ACID). There
are always at least two participants in every transac-
tion: the initiating entity (e.g., a systems administrator,
or the topology discovery manager), and the constraint
manager. The constraint manager is responsible for
enforcing the constraints stored in the repository.
When the transaction initiator requests a commit, the
constraint manager verifies that the new state is con-
sistent, that is, all constraints are satisfied. If a viola-
tion is detected, the manager will invoke the action
associated with the violated constraint. In the case of
multiple constraint violations, the order of execution is
based on the action priority level, with same level
actions executed in arbitrary order. The constraint
manager commits the transaction only if all constraints
can be satisfied. If a cycle is detected in action execu-
tion, the transaction is aborted.

Resource Discovery

The NESTOR Resource Directory Server is
responsible for maintaining the network model and
constraint object repository. Repository objects imple-
ment one or more model interfaces (e.g., Host,
HttpServer). Constraint objects implement the con-
straints between various objects and thereby encapsu-
late the mechanism for propagating changes to the
underlying resource. For example, an object imple-
menting the Host model interface may use SNMP to
propagate changes to the name attribute back to the
host. Changes are only propagated when a transaction
is moved to the commit phase, and are applied in the
same order in which the transactions commit (as
opposed to the order in which they are initiated).

In order to simplify the task of implementing
model interfaces, NESTOR provides adapters for sev-
eral management protocols and services. For example,
the SNMP adapter enables system modelers to map
the aforementioned Host name attribute to an SNMP
MIB object. In addition to SNMP, adapters are pro-
vided for the LDAP and NIS protocols, as well as

particular implementations of the HTTP, DHCP, and
NFS protocols.

Sub-transactions will be ordered so that an
aborted transaction does not expose the system. The
cost of transactions and the practical implications of
system lock-up during configuration changes will be
addressed in future reports.

Prototype Implementation
The NESTOR system prototype we used is

implemented in the Java language and runtime system.
The NESTOR Directory Interface was defined as a
Java interface using the Remote Method Invocation
(RMI) interface protocol for its underlying communi-
cation. The Jini [12] distributed transaction and leas-
ing mechanisms were used in implementing the trans-
action manager and performing garbage collection at
the object repository. Java object serialization was
used for persistent repository operations.

The Experimental Testbed

This section describes in more detail the recon-
figuration necessary for the scenario of the next sec-
tion, and presents the specific network employed in
our experiment.

Recall that in our scenario Jane, whose home is
corporate network A, is now connected to company
B’s network and wants Web/E-mail/Telnet access to
files in her company A. To simplify the exposition, we
make a few simple assumptions about the two net-
works. These assumptions are not necessary in prac-
tice; the approach is more general that the example we
have chosen to illustrate the capabilities of our man-
agement platform. In particular, let us suppose that
Company B uses a switched network which supports
Virtual LANs (VLAN) and that company A’s firewall
supports Virtual Private Networks (VPNs) in order to
provide remote access to its users over the Internet.
Our actual implementation uses Linux for firewalls
and hosts and Cisco switches for VLAN support. Fur-
ther details of the equipment used are provided later in
this section.

Requirements for the Scenario
In order to achieve transparent access to the ser-

vices that Jane wants from her laptop the following
configuration changes are necessary:

1. An available Ethernet port will need to be
located and Jane’s laptop physically connected
(in the premises of company B).

2. The laptop will need to be configured for the
local network environment, including parame-
ters such as IP address, netmask, DNS servers,
default gateways, SOCKS servers, etc. Ideally,
this will be achieved automatically using
DHCP.

3. In order to maintain Company B’s security pol-
icy, the laptop will either have to be connected
to a special ‘‘guest’’ network and the switch
port must be configured for a ‘‘guest’’ virtual

112 1999 LISA XIII – November 7-12, 1999 – Seattle, WA



Konstantinou, et al. Managing Security in Dynamic Networks

LAN, or all the internal services must be guar-
anteed to require authentication. The last option
is exceedingly difficult to implement in typical
networks today and are, in fact, the main moti-
vation for using firewalls to protect corporate
networks.

Linux Box
- NESTOR Server
- Linux NFS Server

Ethernet Hub

Linux Box
- IP Chains Firewall
- CIPE VPN

VPN Net
172.16.6.0/24
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Figure 2: Company A Network.
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Figure 3: Company B Network.

4. Depending on the configuration setting of
Company B’s firewall, the laptop’s address may
have to be explicitly allowed to initiate outgo-
ing connections. Company B’s security policy
may require disabling the laptop’s access to any
external sites other than Company A since it
holds an IP address in Company B’s domain.
This can be achieved by limiting external con-
nections to the VPN protocol.

5. Once the laptop can reach the Internet, it will
need to establish a Virtual Private Network
(VPN) connection with Company A’s firewall
whose policy may be to grant remote hosts lim-
ited access to internal resources. Such policies
will need to be enforced by all internal services
in Company A’s network.

Network Topology

The two networks are shown in Figures 2 and 3.
For simplicity, Company A’s network consists of the

internal subnet 172.16.1.0/24 (net-1) and the VPN
subnet 172.16.6.0/24 (net-6). VPN clients are allo-
cated addresses from the second network (net-6). The
internal Linux NFS server is configured dynamically
by the company-A NESTOR server to restrict mobile
user access to their home directory. A Linux worksta-
tion is used to provide routing, firewalling, and VPN
services for the network of company A. The route
table is statically set with paths to the internal net-
work, the VPN network, and company B’s network.
Firewall rules are added to deny all incoming traffic
access to the internal network of company A (using
Linux Kernel IP Chains). Finally, the CIPE [14] Linux
software is configured to enable the remote establish-
ment of a VPN tunnel.

The network of company B is slightly more
involved. Instead of an ethernet hub, the internal net-
work is a switched network. Layer-2 switching is pro-
vided by a Cisco Catalyst 1900 with support for Vir-
tual LANs (VLAN). The VLAN switch provides for
the physical separation between trusted and untrusted
IP nodes mandated by the policy of company B. Vlan
port assignments will be handled dynamically by the
NESTOR server. Company B also has a trusted subnet
10.0.1.0/24 (net-1) and untrusted subnet 10.0.9.0/24
(net-9). Virtual LANs with IDs 1 and 9 physically
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separate traffic to net-1 and net-9 respectively. A
Linux workstation provides routing, firewall and
DHCP services to the internal network.

The router has three interfaces, one connected to
vlan-1/net-1, another connected to vlan-9/net-9 and
the last connected to the external network. Static
routes are configured to route traffic from the internal
networks (net-1 and net-9) to the external network.
Firewall rules prevent any incoming traffic from the
external network to the internal network with the
exception of established TCP connections to net-9
(guest network). Furthermore, a firewall rule restricts
outgoing connections from net-9 exclusively to the
VPN port of external network destinations. Obvi-
ously, no routing is configured between net-9 and
net-1. The DHCP server on the host is configured to
listen to the two net-1 and net-9 interfaces for DHCP
requests. All unknown hosts are allocated IP addresses
from net-9, while a list of trusted hosts (based on their
unique client ID which may be their ethernet address)
are set to be allocated addresses from net-1. It is
assumed that the list of trusted client identifiers is sup-
plied to the NESTOR server. These trusted identifiers
will be dynamically configured into the DHCP server
by NESTOR.

The networks of the two companies were con-
nected through a common ethernet hub, with static
routes configured between the gateways. In this exper-
iment, the NESTOR servers in each company operate
independently of each other. The details on how
dynamic configuration of the aforementioned net-
works occurs are discussed in the next section.

Constraints and Automatic Reconfiguration
We now outline how Jane gets transparent access

without violating the security policy of either network.
The policy of company B not to allow guest machines
to gain access to the internal (trusted) network can be
translated into the following topology-dependent con-
straints on device and service configuration. (The next
section describes how these constraints can be
expressed formally in the NESTOR configuration lan-
guage).

• Switch ports to which trusted hosts hosts are
connected must belong to the internal (net-1)
VLAN. Switch ports to which guest (or
unknown) hosts are connected must be config-
ured for the guest VLAN (net-9). In cases
where internal and guest hosts are connected to
the same switch port, the port should be set to
the guest VLAN (an alternative would be to
disable the port). Violation of this predicate is
handled by reconfiguring the VLAN member-
ship of the offending port.

• A firewall rule should prohibit any traffic
(including the guest network) from entering the
internal network (except for established TCP
connections).

• The DHCP server should allocate internal IP
addresses only to trusted hosts.

Additionally, company B policy further restricts
guest Internet access by limiting guest connections to
remote VPN servers. The goal of this policy is to pre-
vent guests from attacking or misusing other networks
while in ownership of a company B IP address. This
policy is translated into a simple configuration con-
straint limiting all outgoing traffic from the guest net-
work to well-known ports of VPN services.

The security policy of company A states that
remote (VPN) users should receive limited services. In
this example, remote users are restricted to accessing
only their home directory. We map this policy (there
are other ways) to file server configuration by initially
denying all directory mounts by VPN hosts. When
users sign in with the VPN server to obtain an IP
address, permission is added for the particular host to
temporarily mount the user’s directory. The constraint
on file server configuration states that VPN hosts
should only be allowed to mount the directory whose
user is logged on to the VPN server with that address.
This constraint spans the configuration of the VPN
server as well as the file server.

In the overall scenario, these constraints (predi-
cates and actions) achieve dynamic reconfiguration in
the following manner:

1. User Jane cannot find an available Ethernet port
for her laptop, so she ‘‘borrows’’ the network
connection of an existing host (thereby obtain-
ing physical access to the internal network).

2. Jane’s laptop requests configuration informa-
tion from the DHCP server,

3. The DHCP server returns a lease on a guest
network IP address since the MAC address of
Jane’s laptop is not included in the DHCP dae-
mon internal network list (at this point the lap-
top’s IP configuration is inconsistent with the
link-layer network to which it is connected).

4. By polling the Ethernet switch, the company B
NESTOR server discovers the new laptop host.
The constraint manager evaluates the con-
straints which might be violated by the connec-
tion of a new host to the switch. The security
constraint will be found to be violated, since an
unknown (therefore untrusted) host is con-
nected to the internal network. The action com-
ponent of the constraint is executed, resulting in
the reconfiguration of the affected switch port
VLAN. Note, that if Jane had connected to an
unused switch port, which by default is
assigned to the guest network, this constraint
would not have been violated. Future proto-
types will include mechanisms other than
polling.

5. Jane’s laptop is now connected to the guest net-
work and will attempt to establish a VPN con-
nection with its home server (at company A)
(any other access request, such as web access,
is filtered by the firewall of company B).
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6. Once the laptop has authenticated with com-
pany A’s VPN server it is assigned a virtual IP
address.

interface companyB::EthernetVlanSwitch {

// relationshipset declares a many-to-many relation between instances
// of this class, and instances of the EthernetVlanSwitchPort class.
// The definition includes the role names at both ends of the relation.

relationshipset consistsOfPorts, EthernetVlanSwitchPort, partOf "a
many-to-one relation between a switch port to its enclosing switch";

// An IpInterface is a NESTOR java class maintaining configuration
// information for IP network interface (IP addresses, netmasks,
// protocols, etc).

attribute IpInterface ipInterface;
}

interface companyB::EthernetVlanSwitchPort : CompanyB::Node {
attribute boolean isEnabled "true if the port is enabled, false otherwise";

readonly attribute int portNumber "the number of the port in the enclosing
switch";

attribute int vlanId "the integer Virtual LAN id of this port";

relationshipset forwardsNodes, EthernetNode, forwardedBy "a many-to-many
relationship between instances of this class and EthernetNode instances";

// relationship declares an any-to-one relation between instances of this
// class, and instances of the EthernetVlanSwitch class. By examining
// the matching role declaration in the definition of EthernetVlanSwitch,
// the model compiler determines that this is a one-to-many relation.

relationship partOf, EthernetVlanSwitch, consistsOfPorts "a one-to-many
relation between the switch and its ports";

}

interface companyB::SecurityManager {

boolean isTrusted(int vlanId) "returns true if the VLAN with the given id is
considered a trusted network, false otherwise";

boolean isTrusted(EthernetNode node) "returns true if the EthernetNode is
considered trusted, false if it is untrusted (or unknown)";

relationshipset manages, Node, securityManager "a one-to-many relation
between a security manager and the network nodes it is managing";

}

Figure 4: Network rmodel definition example.

7. The NESTOR server of company A detects this
new lease (by polling for the configuration state
of the VPN server). The constraint on the file
server configuration will be violated since the
file server will not be configured to allow home
directory mounts from that IP address. This
violation will be handled by adding the IP
address of the VPN host to the access list of the
user ’s home directory on the file server.

8. After completing her work, Jane disconnects
from the VPN server. Again, the company A
NESTOR server detects this change, and re-

evaluates the affected constraints, resulting in
the removal of the file access permission for the
previously allocated VPN IP address.

9. After Jane disconnects her laptop from the
company B network, and graciously reconnects
the host whose connection she had ‘‘bor-
rowed’’, the company B NESTOR server will
detect this event and the ensuing constraint vio-
lation, leading to the reassignment of the
affected switch port back to the internal VLAN.

Network Model and Configuration Constraints

The first step in using NESTOR for our experi-
ment is modeling the network. This section gives
some examples of model definitions for network B.
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Models are expressed in the MODEL language [13]

package companyB;

// [ This code is automatically generated by the model-to-Java compiler.
// Comments have been manually inserted for clarity. ]

public interface EthernetVlanSwitchPort extends Node {

public boolean getIsEnabled() throws RemoteException;
/** returns true if the switch port is enabled, false otherwise. */

public void setIsEnabled(boolean value) throws RemoteException;
/** sets the configuration state of the switch to enabled/disabled */

/** model relationships are mapped into Java classes which handle the
consistent management of relation membership. The declared
"relationship partOf, EthernetVlanSwitch, consistsOfPorts" is compiled
into this Java method returning a reference to an object implementing
the OneToManyRelation interface. The EthernetVlanSwitch interface
definition will conversely include a getConsistsOfPorts() method
which will return the same object, but viewed as implementing
nestor.ocl.ManyToOneRelation. The mapping of model relations to Java
is an area which will be further explored in the future. */

public nestor.ocl.OneToManyRelation getPartOf() throws RemoteException;
}

Figure 5: Model to Java compiler output example.

/** The following is an arbitrarily named Java package where
implementations of the Java model interface definitions will be
defined for particular managed elements. */

package companyB.impl;

/** The following class instruments the companyB.EthernetVlanSwitch
interface for the Cisco Catalyst 1900 switch. */

public class CiscoCatalyst1900
implements companyB.EthernetVlanSwitch,
nestor.adaptor.snmp.SnmpTableListener {
/** The class constructor is invoked by the topology discovery

manager, or explicitly by the systems administrator through
a custom Java program, or in the future through the NESTOR
GUI. The implementation further includes code which rediscovers
the SNMP adaptor after the class has been deserialized (in
order to support installation in the NESTOR repository). */

public CiscoCatalyst1900(IpAddress address,
SnmpAuthenticationObject snmpAuth,
CiscoIosAuthenticationObject iosAuth) {

nestor.adaptor.snmp.SnmpAdaptor adaptor =
nestor.repository.Repository.getAdaptor("SNMP");

adaptor.addSnmpTableListener(target, tableOids, handback, this);
}
public boolean getIsEnabled() throws RemoteException { ... }
public void setIsEnabled(boolean value) throws RemoteException { ... }
public OneToManyRelation getPartOf() { ... }

}

Figure 6: Java implementation.

which is an extension of the CORBA [7] IDL with
support for relationships, and other features useful for
event correlation. Figures 4, 5, and 6 shows a subset of
the model definitions for company B.

Consider the EthernetVlanSwitchPort interface def-
inition. This interface models the configuration of a
port in an Ethernet switch supporting VLANs. The
MODEL definition states that the interface is part of
the companyB package and inherits from the Node
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interface. Three attributes are declared to model: the
state of the switch port (enabled/disabled), the port
number (a read-only value), and the integer ID of the
Virtual Lan to which the port is assigned. The rela-
tionship definitions declare a many-to-one relation
mapping the port to its enclosing switch, and a one-to-
many relation associating the port with the Ethernet
(layer 2) nodes which are actively connected to the
port.

EthernetVlanSwitchPort->allInstances
->select(port : EthernetVlanSwitchPort | port.isEnabled)
->forAll(port : EthernetVlanSwitchPort |

if (port.securityManager.isTrusted(port.vlanId))
( (port.forwardsNodes->size > 0)
and
(port.forwardsNodes->forAll(node : EthernetNode |

port.securityManager.isTrusted(node))))
else

( (port.forwardsNodes->size = 0)
or
(port.forwardsNodes->exists(node : EthernetNode |

(!port.securityManager.isTrusted(node))))))

Figure 7: A Declarative Constraint: Trusted ports should only forward frames of trusted nodes.

The EthernetVlanSwitchPort interface represents a
device-independent configuration model for an Ether-
net switch port supporting Virtual LANs (VLAN). In
order to instantiate such an object in the NESTOR
repository, an implementation of that interface must be
provided with support for the configuration protocols
of the actual device being modeled. The next step will
therefore be to compile the MODEL interface defini-
tions into a target implementation language. The cur-
rent NESTOR prototype is built in the Java language
and the model compiler converts the extended IDL
interface definitions to a set of Java interfaces. As part
of the compilation, attribute definitions are converted
to a pair of get/set methods (one for read-only
attributes) following a simple design pattern. Rela-
tionships are compiled into references to collections
implementing the OCL [8] (Object Constraint Lan-
guage) collection semantics. OCL is a language for
expressing declarative constraints (side-effect free)
and was originally created to state the semantics of the
Unified Modeling Language (UML). Unfortunately,
due to Java’s lack of a parameterized type facility, the
translation loses the relationship type information,
forcing users to use class casts. An alternative
approach of automatically generating new classes for
different relation types will be evaluated in the future.

The Ethernet switch supporting VLANs used in
this experiment was a CISCO Catalyst 1900 with
enterprise edition firmware. The Catalyst supports
several SNMP MIBs and may also be configured
using a menu system as well as from the command-
line. The Bridge SNMP MIB dot1dTpPortTable table
was used to instrument the consistsOfPorts attribute of

the Catalyst EthernetVlanSwitch implementation. The
implementation class registers with the NESTOR
SNMP adaptor to receive notification of updates to the
table. When a new port is detected, a new instance of
the CiscoCatalyst1900Port class is constructed. The port
forwardsNodes relationship is instrumented through the
Bridge MIB dot1dTpFdbTable. See [2] for details of the
components of these tables. The VLAN ID attribute is
instrumented using the Cisco IOS adaptor parameter-
ized by the command sequence appropriate for obtain-
ing the VLAN id of this port. The CiscoCata-
lyst1900Port class, implementing the companyB.Ether-
netVlanSwitchPort interface, was defined with a single
constructor parameterized by the IP address of the
managed switch, the switch port number, and an
SNMP and IOS authentication object. The authentica-
tion objects encapsulate protocol-specific security
access information such as passwords and certificates.
Programming Constraints

Based on this model of the network, constraints
are defined to maintain the security policies of each
domain. To take an example, consider the constraint
caused by company B’s policy that untrusted hosts
should not have access to the internal network. This
policy is translated into several constraints on the con-
figuration of network devices. For example, a con-
straint on the switch states that trusted ports (i.e., those
configured for a trusted VLAN) must only be con-
nected to trusted hosts. This constraint, expressed in
the OCL language, is shown in Figure 7. In this
example, the constraint generates the set of all
instances of objects implementing the EthernetVlan-
SwitchPort interface. The select operator constructs a
new set containing only the ports whose isEnabled
attribute is true. The forAll operator makes an assertion
which must hold for all elements of the selected set of
ports. The assertion states that if the port’s VLAN is
trusted, all the Ethernet nodes which are connected
must be also be trusted, otherwise, at least one of them
must be untrusted. The checks for size handle the case
where no hosts are connected to the port in which case
the constraint states that it should be in the untrusted
state.
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Self-management is achieved by associating a
policy script with each constraint. For example, viola-
tion of the above constraint, that trusted ports should
only forward frames for trusted nodes, may be handled
by switching the VLAN id of the port to one which is
untrusted. Policy scripts are expressed in an impera-
tive language, which is Java in the current prototype.
The policy script is invoked with two parameters, the
constraint evaluation stack, and a reference to the
transaction object.

public class TrustedPortTrustedHostHandler
implements nestor.repository.ConstraintHandler {

// (simple constructor) ...

/** Handle violation of the constraint that active trusted ports should
only forward frames of trusted nodes by changing the VLAN id of
violating ports to the public VLAN id */

public void constraintHandler(Object[] stack, Transaction trans) {
// Stack: < port, node >

if (stack.size != 2) throw
new InternalError("Unexpected stack size=" + stack.size + ": "+ stack);

EthernetVlanSwitchPort port = (EthernetVlanSwitchPort) stack[1];

// Obtain the public VLAN id from the security manager of the port.
port.vlanId = port.securityManager.getPublicVlan();

}

Figure 8: Trusted port/host handler.

package nestor.repository;

public interface Constraint extends java.io.Serializable {
public void checkConstraint(Repository repos, Transaction trans)

throws ConstraintException;
public void checkConstraint(RepositoryEvent[] events, Repository repos,

Transaction trans) throws ConstraintException;
public RepositoryEvent[] getConstraintEvents();

}

Figure 9: NESTOR Repository.

The constraint compiler parses the OCL syntax
and lists the events which may trigger a violation of
the constraint. In the previous example the switch con-
straint may be violated after the following repository
events: create/remove EthernetVlanSwitchPort instance,
update in the isEnabled, vlanId, securityManager, and for-
wardsNodes attributes of an EthernetVlanSwitchPort
instance, or changes to the SecurityManager.isTrusted
map.

Constraints are first class objects in the reposi-
tory, which implement the nestor.repository.Constraint
interface. When a constraint is written to the reposi-
tory, the Constraint Manager is notified of the con-
straint predicate and requests to be listener to the list
of relevant events which when triggered may result in
a change of state of the constraint.

Constraints are evaluated at the end of a configu-
ration transaction. Transactions may be initiated by a
manager, using the repository API, or may be initiated
by an adaptor to propagate direct changes to device
configuration. For example, the previous constraint
example may be violated by a systems administrator if
in the course of a transaction a host which was previ-
ously untrusted was marked as trusted. The constraint
may also be violated when a new (unknown) host is
connected to a switch port and this fact is propagated
to the repository by the switch adaptor. If an external
state change transaction is rejected for any reason
resulting in the violation of a constraint, then this fact
is propagated back to the affected objects through the
relationship network which may find an alternative
method of constraint satisfaction (such as an alterna-
tive setting of a firewall). If an object cannot find any
way of satisfying its constraints, it raises an error mes-
sage on the SA console.

Populating the Repository
The NESTOR repository may be populated man-

ually or using a graphical user interface that can gen-
erate objects given the model and the appropriate
parameter values. See Figures 8 and 9. The repository
is accessed through a Java Remote Method Invocation
API. The API supports methods for adding and
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removing objects, locating objects based on the class
and attributes, and initiating transactions. To add an
object to the repository a systems administrator initi-
ates a transaction and then adds the object within the
transaction. The object must implement one or more
model interfaces and support the serializable interface
(i.e., may be stored as a byte string for transport over
the network). Storage in the repository is provided on
a lease basis which must be renewed by some entity
such as a lease renewal manager, or the object itself. If
a lease expires an object may be killed or archived if
possible. If there are constraints that may be affected,
an error message is raised on the console. This obvi-
ates the need for vigorous garbage collection. The cur-
rent NESTOR prototype utilizes the Jini [12] dis-
tributed leasing, event, and transaction APIs.

The repository can also be populated with the
help of a utility for topology discovery. The utility
executes on a host, and periodically pings each net-
work address to establish a map of active nodes1. Cur-
rently, our topology manager accepts classless IP net-
work and netmask combinations. Once a node is
detected as being active, the utility attempts to extract
information using the SNMP protocol, and tests for
service availability by attempting to connecting to dif-
ferent services (such as Telnet, HTTP, NFS, FTP, etc).
In its current incarnation, the topology manager is
mostly focused on discovering workstations (such as
Linux and Windows NT boxes) and supplying infor-
mation about their interface configurations, route
tables, and active services.

Returning to our scenario, the administrator con-
structs a new instance of the CiscoCatalyst1900Switch
object using the IP address assigned to the manage-
ment interface of the VLAN switch and the appropri-
ate authentication information for administering the
switch which are the SNMP community and IOS pass-
words. NESTOR repository objects implement an ini-
tialization and control interface (analogous to Java
applets) so that their execution can be controlled by
the NESTOR server. An object may query the reposi-
tory for services such as adapters using an instance of
the RepositoryContext interface. For example, the
switch object will use an SNMP and IOS adaptor
instances. New adaptors may also be used provided
they implement the NestorAdaptor interface). After
obtaining the necessary adaptor references, the object
will subscribe for notification of changes in the rele-
vant SNMP objects, and IOS results.

When the administrator commits the transaction
to create the new switch object, the transaction man-
ager will verify that the addition did not violate any
constraints. The constraint, shown in Figure 7, may be
violated when new instances of objects implementing
the EthernetVlanSwitchPort interfaces are created.
Assume the initial switch state does not violate the

1The security warnings that these may generate will have
to be handled.

aforementioned constraint. When user Jane connects
her laptop computer to network B, and in particular to
a switch port, the switch SNMP bridge MIB table
dot1dTpFdbTable will add the laptop’s MAC address.
At the time of the next poll by the NESTOR SNMP
adapter, the change will be detected resulting in notifi-
cation of the subscribing

CiscoCatalyst1900Switch object. The switch object
will look up for an instance of EthernetNode with the
same MAC address, creating a new instance if one is
not found. The EthernetNode is then added to the
switch’s forwardsNodes relation. At the point where all
propagated changes have been reflected in the model,
the switch object will commit the changes. At this
point the constraint manager will again verify the set
of constraints which may have been affected by the
transaction. In this example, since Jane connected her
laptop to a switch port previously assigned to the
internal network, the constraint on switch port VLAN
state will be violated, and the policy script will be exe-
cuted as outlined earlier in the paper.

Future Extensions and Applications

As mentioned in the introduction, the work
described in this paper is the first step towards our
long-term goal of building a management platform for
security and service availability. Several interesting
theoretical and implementational issues have been
identified and examined in this project. Foremost
amongst them is the need for formal tools to express
network security and service policy. In the current
work, we have assumed that the two networks in ques-
tion have security policies that have to be obeyed
when reconfiguring the network. Upcoming reports
will deal with the questions of how general network
security policy can be stated formally and imple-
mented automatically by integrating it with NESTOR
with appropriate translation mechanisms. This
requires settling questions of an appropriate language
for security policy and checking consitency of poli-
cies.

Another dimension of our approach that we did
not address in this paper is scalability. For the network
management platform to be viable in wide-area net-
works, management discipline must be lightweight
and modular. Furthermore the response time of the
management software to proposed changes in the net-
work must be fast enough to keep pace with the rate of
change. Our current architecture uses centralized
NESTOR servers but in a large network this is likely
to be infeasible. To ensure fast response times, some
of the management functionality must be localized.
Local decision-making capabilities have to be bal-
anced against the more important goal of automatic
network consistency. Since verifying (and conse-
quently, propagating) each and every change in a
dynamic network with a central global policy server is
not likely to be successful, our approach is to dis-
tribute the task of maintaining global network
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properties such as consistency and security policy
using constraints between network elements. We plan
to investigate a distributed architecture for our man-
agement platform wherein every network element
such as a switch or laptop has some NESTOR func-
tionality within it so that network elements can
directly communicate with each other using a
NESTOR-like interface which implements constraints
between these elements. For example, a switch may
be enabled to reconfigure within a predefined set of
allowed configuration (as defined by the global secu-
rity policy) in response to local changes. Our future
work on scalability will address the problem of parti-
tioning policy and constraints in a network between its
various elements.

In the short term, the current design of NESTOR
will be extended with a focus on the design of the
security, distribution, replication and caching proto-
cols, as well as optimization issues in the current pro-
totype implementation. NESTOR will be applied to
verifying the configuration of the Columbia Univer-
sity department of Computer Science. Deployment on
a large, live network such as Columbia CS will help
identify areas for performance optimization. The
NESTOR source code and sample models will also be
made freely available for downloading2.

Related Work

The most closely related management architec-
ture to NESTOR is the ICON system [5] which used
active database style Event-Condition-Action (ECA)
rules to state restrictions on objects instrumented by
SNMP MIB values. The NESTOR system also incor-
porates services such as multi-protocol access to het-
erogeneous resource information, configuration trans-
actions, declarative constraint, and constraint propaga-
tion through policy scripts. The Dolphin project [9]
developed a declarative language for modeling net-
work configuration and operation for fault analysis
where the emphasis was on deducing the cause of fail-
ures that have occurred by tracing the propagation of
operational rules in the model. Constraint-based man-
agement has been pursued previously in [10] and [11]
where constraints are employed for the diagnosis of
network faults. In the area of configuration manage-
ment automation, the GeNUAdmin system [6] is an
off-line tool for extracting network configuration
information into a centralized database, performing
updates on that database which are checked for consis-
tency, and pushing the changes back to their respective
configuration files. Simple consistency checks are per-
formed to assure that added values are valid and that
key values are unique. The RPI service dependency
tool [4] detects service dependencies and generates up
to date server listings. The goal of the system is to pre-
vent unforeseen service interruptions caused by hid-
den service dependencies. Ganymede [1] is an

2See http://www.cs.columbia.edu/dcc/nestor .

extensible and customizable directory management
framework applied to the central management of user
and host data, which is distributed in different
databases. Ganymede supports transactions on the
central repository objects, but does not provide a con-
straint mechanism beyond a few built in security, and
deletion propagation checks. NESTOR can support
these functionalities given an appropriate set of con-
straints on the unified configuration model.

Conclusions

Providing guest users secure network services
requires automatic, dynamic, and safe configuration of
multiple devices and services. Even though the opera-
tional and security constraints span multiple devices,
services, and profiles, NESTOR provides a unified
model of network configuration which significantly
simplifies specification and management of network
constraints. By separating the model definitions from
the instrumentation layer implemented by NESTOR,
we can implement high-level security policies auto-
matically and effectively by compiling them into
NESTOR constraints on network elements and ser-
vices. Constraint resolution is achieved through the
automatic execution of policy scripts whose actions
are subject to the constraints defined. This, combined
with the fact that all configuration changes are logged,
promises to make use of automated reconfiguration a
practical reality.
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