
Proceedings of LISA '99: 13th Systems Administration Conference
Seattle, Washington, USA, November 7–12, 1999

S E R V I C E T R A K M E E T S N L O G / N M AP

Jon Finke

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 1999 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

ServiceTrak Meets NLOG/NMAP
Jon Finke – Rensselaer Polytechnic Institute

ABSTRACT

Network port scanning tools can be helpful in mapping services and exposures, but in large
environments you often get more information than you can handle. This paper describes a
project to take the output from NMAP/NLOG and merge it with the existing enterprise host
management system. This makes it simple for service or platform specific administrators to
study the machines in their purview.1

Introduction

Due to some recent security problems at our site
where a number of machines were cracked due to
exposures in in.statd, we decided to step up our project
of removing or disabling unneeded services on the
workstations and servers maintained by our depart-
ment. Unfortunately, the press of other projects pre-
vented our system administrators responsible for the
various operating system (AIX, Solaris, and IRIX)
from working on the investigation. So rather than try
to look at these systems from the inside, we decided to
try looking at them from the ‘‘outside’’.

NLOG and NMAP
At about the time that this project started, our

networking department had installed NLOG [5] and
NMAP [4] and had started scanning all of our address
space. This meant that we had all of the raw data we
needed on ports (services), and we just needed to
break it down and display it so that we could under-
stand it effectively. This method has the added advan-
tage of being able to scan machines that might not be
directly supported by the staff in our department.

To quote from the NMAP web page, ‘‘nmap is a
utility for port scanning large networks.’’ It is actually
a collection of modules that can scan TCP, UDP and
ICMP services, and has facilities for bypassing fire-
walls and packet filters, as well as techniques to
reduce the chance of scans being detected. While the
stealth features are not of interest to us, the general
port scanning facility is quite useful. Another interest-
ing feature of NMAP is identifying the operating sys-
tem via ‘‘TCP/IP fingerprinting’’. By sending a num-
ber of special packets with assorted options set (and
other techniques), NMAP is often able to identify
what operating system, and sometimes even the ver-
sion of the operating system that is running on the tar-
get computer based on the responses to the test pack-
ets.

There is a related package called NLOG that
works with NMAP. The NLOG home page states
‘‘Nlog is a set of perl scripts that help you manage

1Normally, I would use the term ‘‘domain’’, but in many
cases, the machines in question are NOT grouped by internet
domain.

your NMAP log files. Included are conversion scripts,
a CGI Interface, and the documentation to build your
own analysis applications.’’ Although the NLOG
package offered some nice query options, it is some-
what limited by not being able to break down the
information into the format that we needed. My group
supports a number of public access Unix workstations,
as well as some, but not all, of the computers owned
by institute faculty and researchers, spread over a
number of different buildings, subnets and domains.
Thus a simple sort by IP address or domain is not
enough for our needs. It is also nice to know who
owns and administers each computer, and NLOG
doesn’t have that information readily available.
Service Trak

In 1997, we started a project called ServiceTrak
[3] to assist in documenting our meta-system configu-
ration. ServiceTrak generates a number of web pages
of system configuration and server information. This
seemed to be a natural place to hang the port scan
information. We added the services (ports) discovered
by NMAP to each of system (computer) pages, and
added a new tree of discovered services, with all of the
systems (hostnames) providing that service. One of
the neat features in NMAP is to identify the operating
system being run by the target system. It was interest-
ing to see how this related to what we thought was
there.

Since the actual port scans were being done by
another department, I was only concerned with the
database portion of the project. This broke down into
four parts; loading the raw NLOG data into Oracle,
comparing the raw data to the previous scans, defining
some controls and ‘‘safety levels’’ on services and
finally generating some web pages.

Converting and Comparing

The process of comparing new port scan data to
our existing port scan information is closely coupled
to the Oracle load process. One of the things we want
to maintain is some historical record of what ports
were open on a host, even if they are no longer open.
This can help to track what problems and unexpected
services that have been cleaned up. To this end, we
want to keep track of when we last checked for a host
or port, as well as when we last found something.

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 197

ServiceTrak Meets NLOG/NMAP Finke

Raw Data Load
The NLOG database format is intended to be

processed by PERL scripts, so that it lends itself to
easy reformatting. One of the utilities in the NLOG
package converts NMAP scan files into NLOG ‘‘.db’’
files. For each host, it lists the IP Address, the number
of ports found, the actual port list and NMAPs best
guess at the OS of the target host. The port list
includes each of the port numbers and the associated
protocol (TCP/UDP) that it found for that host.

Name Type Size Description

IP_Add Varchar2 32 IP Address of host. This is the primary key.
Oct_1 num 3 First Octet of the IP address. Breaking this out simplifies some

database operations.
Oct_2 num 3 Second Octet of the IP address.
Oct_3 num 3 Third Octet of the IP address.
Oct_4 num 3 Forth Octet of the IP address.
OS_Type Varchar2 255 The type of operating system as determined/guessed by NMAP
Load_Date Date Date we loaded this record.
Domain_Id num 9 Internal identifier to match with Hostmaster tables.

Table 1: Raw_Host_Data Oracle table definition.

Name Type Size Description

Domain_Id num 9 Internal identifier to match with Hostmaster tables. This can be
used to get the hostname and the IP address.

OS_Type Varchar2 255 The type of operating system as determined/guessed by NMAP
First_Detected Date When we first detected this IP address.
Last_Updated Date When we most recently found something at this address.
Last_Checked Date When we last looked on this subnet.

Table 2: NMAP_System_List Oracle dable definition.

Our first step is to get the raw data from NLOG
loaded into Oracle. This will allow the rest of the pro-
cessing to take place inside the Oracle database server.

These files are processed by a shell script, which
figures out the scan date for each file from the file sys-
tem (ls -lt), pushes the contents of the .db files through
awk to generate one .sql2 file for each .db file. The
script also generates a master .sql file that invokes
each of the generated .sql files and then calls the rest
of the processing. All together, this collection of
scripts and generated scripts manages to load all of the
raw data into the database and handles the housekeep-
ing details. The generated data into the Raw Host Data
table (see Table 1) and the port information into the
Raw Port Data table. After the raw data is loaded, the
Domain_Id field is filled in using the Oct_1-Oct_4 val-
ues in the Hostmaster [1] IP Address table3. The
Domain_Id plays an important part in comparing the
raw data with the historic data.

2The Oracle command line interface, SQL*PLUS will read
.sql files for oracle commands and expressions.

3All of our Hostmaster (DNS) data are maintained and
stored in our Oracle database. The Domain_Id is an internal,
unique identifier for each host at our site.

Comparing Raw Host Data To The Historical Data

Now that we have all of the raw host and port
data split up and loaded into the database, we need to
compare it with our historical data. Rather than
pulling the data back out of the database to compare it,
we wrote a set of PL/SQL4 procedures. The original
scans are done as a range of one or more subnets, so a
given set of data files to be processed will have some,
but not all of the hosts on our network.

Preparing and Retrieving the Host Data

Extracting the raw host data is easy. Since we are
interested in processing all of the raw data we have, a
simple database select is possible. In the processing
code (see appendix 1), we define the following
cursor5:

Cursor Raw_Host_Scan is
Select IP_Add, OS_Type,

Load_date, Domain_Id,
Rowid

from Raw_Host_Data
order by domain_id;

Although the historic data (stored in the
NMAP_System_List, see Table 2) is derived from raw
host data, we don’t need to include all of the raw data.
Since we can obtain the IP address from Domain_Id,
we don’t need to include it here. We have added some
additional date fields to keep track of past scans.

4PL/SQL is Oracle’s procedural extension to the SQL Stan-
dard. It allows for programs to be executed on the database
server which can yield performance gains, as well as storing
the code in the database itself.

5A cursor allows you to define a query in PL/SQL

198 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

Finke ServiceTrak Meets NLOG/NMAP

Name Type Size Description

IP_Add Varchar2 32 IP Address of host. This is the primary key.
Port Num Port number.
Family Varchar2 12 Port type such as ‘‘TCP’’ or ‘‘UDP’’.
Load_Date Date Date we loaded this record.

Table 4: NMAP_Raw_Ports Oracle table definition.

However, since we may not be processing all subnets6,
we just want to work on the historical records for the
subnets found in the current set of raw records. To do
this, we define the Historic_Host_Scan cursor:

Cursor Historic_Host_Scan is
Select nsl.Domain_Id, nsl.Rowid
from Nmap_System_List nsl,

dns_ip_address dia
where nsl.domain_id =

dia.domain_id
and dia.ip_octet_3 in

(select distinct oct_3
from Raw_Host_Data)

order by nsl.domain_id;

This query will get the all of the previous NMAP
scan entries we have processed on this set of subnets7.
This basically has four steps. The first step is the sub
query Select distinct oct_3 from Raw_Host_Data, which
will create a list of all the different subnets found in
the raw data. The next step is to identify all registered
IP addresses in the DNS_Ip_Address table and return
those Domain_Id s. This list of Domain_Id s is then
matched against our historic host scan returning the
Domain_Id and Rowid of the historic record. Finally,
this list is sorted by the Domain_Id . The Rowid is an
internal Oracle identifier for that specific entry in the
database. It can be used for rapid (efficient) access to
that row.

Processing the Host Data

We now have two lists, each sorted by the
Domain_Id : the ‘‘raw’’ data from the most recent scan,
and related historic data. By comparing the Domain_Id
s while stepping through both lists together, we can
detect newly found (scanned) hosts, historic hosts that
were not in the latest scan, and hosts that are in both
lists. (The PL/SQL source code is available in
Appendix 1.)

If it ‘‘raw’’ Domain_Id is lower, that means we
found a new system that was not previously in the his-
toric data. We insert this record into the database and
get the next entry in the ‘‘raw’’ list. (If there are no

6The NMAP scans are done on a ‘‘Class C’’ subnet basis,
even if target host subnet is different. This makes it easier
for the people running NMAP, and makes the processing
easier.

7All of the IP address information happens to be stored in
this same database, making this selection on IP address very
easy. Alternately, the subnet information could also be stored
in the NMAP_System_List table.

other changes, the lists should be ‘‘in synch’’ again.) If
the two values are the same, the records are for the
same host and we need to compare the port values (see
the next section).

If the ‘‘raw’’ Domain_Id is higher than the
Domain_Id from the historic record, then the record in
the historic list represents a previously known host
that was not detected in the most recent scan. There
are several possible reasons for this: the host may have
been retired, there could have been a network prob-
lem, or the host may be down for some reason. We
want to maintain the historic data for this host, includ-
ing the fact that it was not found. We do this by updat-
ing the Last_Checked field in the historic data. (We
don’t do anything with the ports, since we don’t have
any data.) This condition will be identified by the
reporting tools. The historic list is then advanced to
the next record, and the process repeats until the lists
are in synch again.

Consider the example data in Table 3. There are
both raw and historic data for sam.rpi.edu (Domain_Id
7), so we update the port information and then get the
next raw and next historic Domain_Id s. Now we find
that the raw id (12 - george.rpi.edu) is less than the
historic id (15 - fred.rpi.edu), so we know that
george.rpi.edu is a new record, and we insert it. We
then select the next raw entry where we get
fred.rpi.edu (15) which matches the existing historic
entry. These two match, so we update the ports and
get the next two entries in the list. This time, the his-
toric entry dave.rpi.edu is less than the raw entry,
sharon.rpi.edu. Since we didn’t detect dave.rpi.edu in
the most recent NMAP scan, so we need to update the
Last_Checked_Field it and then get the next historic
entry, sharon.rpi.edu, which matches the raw entry and
we do the port compare and we are done.

Raw Id Historic Id Name
7 7 sam.rpi.edu
12 george.rpi.edu
15 15 fred.rpi.edu

22 dave.rpi.edu
25 25 sharon.rpi.edu

Table 3: Example data.

Handling Port Data
We also need to keep track of what ports (ser-

vices) were encountered for each host. To this end, we
have a raw port table (Table 4) and a historic port table
(Table 5). As with the historic host information, we

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 199

ServiceTrak Meets NLOG/NMAP Finke

don’t need to keep track of the IP Address in the port
table, instead we can use the Domain_Id to associate the
ports with the host.

Name Type Size Description

Domain_Id num 9 Internal identifier to match with Hostmaster tables. This
can be used to get the hostname and the IP address.

Port Num Port number.
Family Varchar2 12 Port type such as ‘‘TCP’’ or ‘‘UDP’’.
First_Detected Date When we first detected this IP address.
Last_Updated Date When we most recently found something at this address.
Last_Checked Date When we last looked on this subnet.

Table 5: NMAP_Historic_Ports Oracle table definition.

Type Description

Safe Service is safe to have running
Server Ok for server class machines, questionable for desktops
NoCrypt This service exposes sensitive information to network sniffing
Suspect Often indicates a hacked machine
Unknown We haven’t decided yet.

Table 6: Safety Validation Table NMAP_Service_Danger_Types.

Port Fam Name Safety Description

9 tcp discard safe Discard packets
21 tcp ftp server
22 tcp ssh safe Secure shell
23 tcp telnet NoCrypt Remote access
31 tcp msg-auth Unknown MSG Authentication

1524 tcp ingreslock Suspect ingres

Table 7: Services NMAP_Service_List.

For each host we are updating or inserting, we
select the ports to go along with the raw and historic
records. For the raw records, we use the IP address as
the key, and for the historic records, we use the
domain_id as the key. We order the records from both
sets by port and family, and again loop through, com-
paring ports and families, adding, deleting and updat-
ing records as needed. To get the raw port data, we use
the following cursor, using the address value to limit
the ports to just the ones for the current host (address)
in question:

Cursor Raw_Port_Scan
(address varchar2) is

Select IP_Add, Port, Family,
Domain_Id, load_date,rowid

from Nmap_Raw_Ports
where IP_Add = address
order by Port, Family;

In a similar way, we get the historic port information
for this particular host, using the Domain_Id as the key:

Cursor Cooked_Port_Scan
(Did number) is

Select Port, Family, rowid
from Nmap_Port_List
where domain_id = Did
order by Port, Family;

Both of these selections are sorted by the Port, and
then by the address family. These two lists are then
compared, stepping through them, much like we did
with the host comparison.

Controls

When we display ports (services), it would be
nice to include a bit more information about the port
than simply the service name. As a starting point, we
loaded /etc/services into a table. While this gives us a
service name and sometimes a brief description of the
service, we added another column called ‘‘safety’’.
Since the primary objective of this project was to
improve security, we rated each service as to how
‘‘safe’’ it is to have running. In some cases, while the
named service might be considered safe, common
security exploits may be using that port as a back door
into a system. For these cases, seeing that this port
active might be a good indicator that a computer had
been hacked. In other cases, some versions of that ser-
vice may have known holes, so additional checking
may be required to determine if the computer in

200 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

Finke ServiceTrak Meets NLOG/NMAP

question is running a safe version of the service. Other

Name Type Size Description

Name Varchar2 32 The name used for grouping.
Tag Varchar2 16 Used in filenames in the web tree.
Group_Id Number 12 Points to the top level of the host group ‘‘branch’’.
Description Varchar2 255 A short description to be included in the web pages.

Table 8: Service_Track_NMAP_List Oracle table definition..

Name Hosts Ports Description

All 3222 365 All scanned hosts
CIS Staff Workstations 60 35 computer center staff Unix workstations
Remote Access 4 19 Public Access Timeshare machines
CUSSP 217 53 Faculty Unix Support Program machines
RCS Workstations 284 45 Public Unix Workstations
NIC Cluster 62 101 High Performance Computing Cluster

Figure 1: NMAP Services.

Service Sample Page
ssh (22/tcp)

Remote Access NMAP Ports
• Secure Shell • Safety Level: Safe • Tab Separated Values Page

Hostname First Detected Last Detected Last Checked OS

cortez.sss.rpi.edu 12-May-99 12-May-99 12-May-99 AIX 4.2
rcs-sun1.rpi.edu 12-May-99 12-May-99 12-May-99 Solaris 2.6-2.7
vcmr-12.rcs..rpi.edu 12-May-99 12-May-99 12-May-99 Solaris 2.6-2.7
vcmr-19.rcs..rpi.edu 12-May-99 12-May-99 12-May-99

Figure 1a: Service Sample Page

protocols are inherently insecure and we may want to
discourage their use. We defined the safety values8

listed in Table 6.

The more challenging job of course, was to rate
the services as to their safety level, and expand the
descriptions where needed. Naturally, our safety rat-
ings reflect our department’s own needs and policies.
A partial list is shown in Table 7.

One of our security objectives is to eliminate
clear text passwords on the network. Thus, we flag
‘‘telnet’’ as a somewhat dangerous service. We also
want folks to use central FTP servers, so that we mark
FTP as ‘‘server ’’. While we don’t have anything
against Ingres, we don’t run it on our machines, and
the ingres lock port was recently used in a particular
exploit script. Machines with the ingres lock port open
tend be hacked, rather than offering Ingres. Therefor
we mark ingress lock as ‘‘suspect’’. We have not clas-
sified all services (our service file listed 924), rather
we are concentrating on classifying the ones that are
showing up on machines we are interested in.

8One nice thing about Oracle is the ability to define valida-
tion tables that define what values a column can have.

The last control element we need, is some way to
define how we want to group hosts in the output
pages. We already have a number of host groups set
up in our database, these are used for access control
(like generating /etc/hosts.lpd), usage statistics [2] and
so on. Thus, we had a start of the host groupings that
we could use. This resulted in another table, Ser-
vice_Track_NMAP_List.

This table is used in the generation of the top
level of the NMAP web tree. At present, it allows
breakdowns by host group and a dump of all hosts
with detected services.

Outputs

The top of the NMAP web tree looks something like
Figure 19. There is a standard heading with logos and
other boilerplate that we omit from this paper. Each of
name entries is a link to a tree of ports for that group.
A typical host group web page looks something like
what is shown in Figure 2. Again, the standard head-
ing is omitted.

9In general, the generated web pages are simply HTML ta-
bles. Rather than taking screen shots from a web browser,
we have reproduced the tables here. HyperLinks are indicat-
ed by italic.

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 201

ServiceTrak Meets NLOG/NMAP Finke

From the host group page, we can continue to
drill down the tree, selecting one of the services of
interest. As seen in Figure 3, we add a little more to
the basic table, along with ‘‘danger level’’ and
description, we include a link to a Tab Separated Val-
ues Page. The TSV file has an entry for each of the
systems listed, including useful information such as
owner, sys admin, location, and a lot of other informa-
tion that is already in the Service Trak database. This
has proven very useful, since it can easily be loaded
into a spreadsheet. Service Trak generates a TSV file
for just about any page the has a list of computers.

Name Port Family Danger Count Description

echo 7 tcp safe 4
discard 9 tcp safe 4
daytime 13 tcp safe 4
chargen 19 tcp Unknown 4
ftp 21 tcp server 2
ssh 22 tcp safe 4 Secure shell
telnet 23 tcp NoCrypt 4
time 37 tcp safe 4
sunrpc 111 tcp Unknown 4
ident 113 tcp safe 2
loc-srv 135 tcp Unknown 2 Location Service
smux 199 tcp Unknown 2 snmpd smux port
exec 512 tcp Unknown 4
login 513 tcp Unknown 4
shell 514 tcp Unknown 4 no passwords used
printer 515 tcp Unknown 4 line printer spooler
uucp 540 tcp Unknown 1 uucp daemon
ta-rauth 601 tcp Unknown 2 For AFS kerberized services
writesrv 2401 tcp Unknown 2 Temporary Port Number

Figure 2: RCS Remote Access Services.

We can continue to drill deeper. Each hostname
listed is a link to that host’s entry in the Service Trak
tree. We have expanded that entry to include what
ports were detected on that host by NMAP. Of course,
you can click on those service names and end back up
near the top of the NMAP tree.

Conclusions and Surprises

The first reaction of most of the staff to see the
pages was ‘‘cool’’, followed almost immediately by
‘‘Hmm, I didn’t know we were running that there, I
will have to look in to that.’’ In that, the primary
objective of the project was achieved. It also pointed
out a number of anomalies in our configurations. For
instance, our remote access machines are all supposed
to provide the same services. However, it was quickly
noticed that the ‘‘host counts’’ for services did not
match.

The last column in the list of hosts for a particu-
lar service, is NMAPs guess at what the operating sys-
tem being used on that machine. We were somewhat

disturbed to find some of our ‘‘trusted host’’ Unix
machines (trusted for LPR) were in fact running Win-
dows NT10.

We also added the NMAP ‘‘guess’’ of the operat-
ing system to our hinfo program. The hinfo program
takes a host name or IP address, and returns owner,
admin and change history and anything else we have
in the database for a machine on our network. This
program is frequently used by our NOC staff when
investigating oddities.

For security and privacy reasons, we do not
allow public access to the Service Trak web pages.
Although much of the information is available to the
public, and NMAP is easy to install, we don’t want to
make things too easy for people who want to attack
our site. The web pages are on a protected web server,
limiting access by either IP address (the staff subnet)
or via ID and Password authentication.

At present, we only output information via the
web. However, since many of the Service Trak pages
have a TSV option, staff interested in other formats
can quickly download the page to a spreadsheet and
produce reports in other formats.

Service Trak does have a list of ‘‘sanity checks’’
it runs on a daily basis, and we could add checks to
look for changes or ‘‘unsafe’’ NMAP entries and gen-
erate an alert. However, we are not making regular
NMAP scans. Each scan takes a day or so (this is

10The disturbing part was that we still trusted them, not that
they were running NT. At present, our NT machines do not
use our Unix name space, and ‘‘administrator ’’ is NOT a
valid Unix user!

202 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

Finke ServiceTrak Meets NLOG/NMAP

mostly how we are doing it, my understanding is that
NMAP can run a lot faster) and we have not resolved
all of the policy issues with scanning the network.
Since there are tools other than Service Trak may be
more appropriate for detecting problems in real time,
we have not pursued this avenue.
NMAP Quirks

We noticed that the NMAP scan appears to kill
inetd on some platforms. This was later confirmed in
some bug reports. These reports also mentioned some
other systems that might react poorly to getting
scanned. We certainly noticed some other system
administrators who reacted poorly to being scanned.
We are now exploring some of the policy implications
of port scanning (by our own staff) as well as ways of
running NMAP in less ‘‘destructive’’ modes. We have
also removed some of our major network gateways
from the scans (at the request of our network opera-
tions staff), as the scans generated a number of SNMP
traps that generally indicate hostile activity.
Alternatives

Clearly, most places do not run ServiceTrak, and
many do not even use a relational database to manage
their system configuration. However, the thing that
gave us the biggest boost, was the ability to look at
systems based on our host groupings. The NLOG
package may allow for simple integration of your own
site configuration information. This would be a good
avenue for exploration. Given that we already had Ser-
viceTrak in operation, we did not explore expanding
and enhancing NLOG.

At present, the Service Trak ‘‘output’’ is a huge
tree of web pages that are regenerated on a daily or
weekly basis. This regeneration takes a few hours to
run, generates 34,000 files, and uses 120Mb of disk
space. While disk space is still pretty cheap, I expect
that some parts of Service Trak will by moving to
dynamic web pages, generated on demand. Still, a lot
less things have to work in order to make files avail-
able versus dynamic web pages, so I expect that at
least part of Service Trak will remain in files, regener-
ated daily.

References and Availability

All source code for the Simon system is avail-
able on the web (or via AFS). See http://www.
rpi.edu/campus/rpi/simon/README.simon for details.
In addition, all of the Oracle table definitions as well
as PL/SQL package source are available at http://
www.rpi.edu/campus/rpi/simon/misc/Tables/simon.
Index.htm .
Acknowledgments

I would like to thank David Hudson of Network
Support Services, Rensselaer Polytechnic Institute for
his work with installing and running NMAP and
NLOG. I also wish to thank David Parter of the Com-
puter Science department of the University of Wiscon-
sin for his comments and suggestions on all the drafts
of this paper.

Author Information

Jon Finke graduated from Rensselaer in 1983,
where he had provided microcomputer support and
communications programming, with a BS-ECSE. He
continued as a full time staff member in the computer
center. From PC communications, he moved into
mainframe communications and networking, and then
on to Unix support, including a stint in the Nysernet
Network Information Center. A charter member of the
Workstation Support Group he took over printing
development and support and later inherited the Simon
project, which has been his primary focus for the past
eight years. He is currently a Senior Systems Pro-
grammer in the Server Support Services department at
Rensselaer, where he continues integrating Simon
with the rest of the Institute information systems, and
also deals with information security concerns.

Reach him via USMail at RPI; VCC 319; 110
8th St; Troy, NY 12180-3590. Reach him electroni-
cally at <finkej@rpi>.edu. Find out more via http://
www.rpi.edu/˜finkej.

References

[1] Jon Finke. Simon system management: Hostmas-
ter and beyond. In Proceedings of Community
Workshop ’92, Troy, NY, June 1992. Rensselear
Polytechnic Institute. Paper 3-7.

[2] Jon Finke. Monitoring usage of workstations
with a relational database. In USENIX Systems
Administration (LISA VIII) Conference Proceed-
ings, pages 149-158. Rensselear Polytechnic
Institute, USENIX, September 1994. San Diego,
CA.

[3] Jon Finke. Automation of site configuration
management. In The Eleventh Systems Adminis-
tration Conference (LISA 97) Proceedings, page
Unknown. Rensselaer Polytechnic Institute,
USENIX, October 1997. San Diego, CA.

[4] Fyodor. Nmap free security scanner. Web Site,
1999. http://www.insecure.org/nmap .

[5] HD Moore. Nlog: Nmap log management tools.
Web Site, 1999. http://nlog.ings.com .

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 203

ServiceTrak Meets NLOG/NMAP Finke

Appendix 1 – PL/SQL Process host data

procedure Add_Host (Raw in Raw_Host_Scan%Rowtype) is
begin

Insert into Nmap_System_List
(System_Id, Domain_Id, Os,

First_Detected, Last_Updated, Last_Checked)
values (Raw.System_Id, Raw.Domain_Id, Raw.Os_Type,

Raw.Load_date, Raw.Load_date, Raw.Load_date);

Update_Port_List(Raw);

Delete from Nmap_Raw_Host_List
where rowid=raw.rowid;

end Add_Host;
procedure Delete_Host (Historic in Historic_Host_Scan%Rowtype) is
begin

Update Nmap_System_List
set last_checked = Global_Check_Date

where rowid = historic.rowid;
end Delete_Host;
procedure Update_Host(Raw in Raw_Host_Scan%Rowtype,

Historic in Historic_Host_Scan%Rowtype) is
begin

Update Nmap_System_List
set System_Id = Raw.System_Id,

last_checked = raw.load_date,
last_updated = raw.load_date

where rowid = historic.rowid;
Update_Port_List(Raw);

Delete from Nmap_Raw_Host_List
where rowid=raw.rowid;

end Update_Host;
procedure Compare_Host_Lists
is

Raw Raw_Host_Scan%Rowtype;
historic Historic_Host_Scan%RowType;

begin
Open Raw_Host_Scan;
Open Historic_Host_Scan;
Fetch Raw_Host_Scan into Raw; -- Prime the pump
Fetch Historic_Host_Scan into Historic; -- and this one
loop

exit when Raw_Host_Scan%NotFound and Historic_Host_Scan%NotFound;
<<InnerLoop>> loop
if Raw_Host_Scan%NotFound then

Delete_Host(Historic);
Fetch Historic_Host_Scan into Historic; -- and this one

exit InnerLoop; -- continue
end if;
if Historic_Host_Scan%NotFound then
then

Add_Host(Raw);
Fetch Raw_Host_Scan into Raw;
exit InnerLoop; -- continue

end if;
-- Ok, we know they are BOTH here.... Lets compare
if Raw.Domain_Id > Historic.Domain_Id then -- Raw list MISSED a historic,

Delete_Host(Historic);
Fetch Historic_Host_Scan into Historic; -- and this one

204 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

Finke ServiceTrak Meets NLOG/NMAP

exit InnerLoop; -- continue
end if;
-- Lets try the other way
if Raw.Domain_Id < Historic.Domain_Id then -- New Raw record

Add_Host(Raw);
Fetch Raw_Host_Scan into Raw;
exit InnerLoop; -- continue

end if;
-- Not greater, not less, must be the same
Update_Host(Raw, Historic); -- Do the ports
fetch Raw_Host_Scan into raw;
fetch Historic_Host_Scan into historic;

exit InnerLoop; -- InnerLoop is just for a continue function
end loop InnerLoop;

end loop;

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 205

206 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

