
Proceedings of LISA '99: 13th Systems Administration Conference
Seattle, Washington, USA, November 7–12, 1999

C R O - M A G N O N :
A P AT C H H U N T E R - G AT H E R E R

Jeremy Bargen and Seth Taplin

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 1999 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Cro-Magnon: A Patch Hunter-Gatherer
Jeremy Bargen – University of Colorado at Boulder and Raytheon Systems Company

Seth Taplin – University of Colorado at Boulder and CiTR, Inc.

ABSTRACT

On a relatively large and heterogeneous network, there may be several operating systems
and dozens of major applications in general use. Locating and maintaining patches for these
systems can take up a significant portion of a system administrator’s time. In addition, groups of
machines must all be kept at consistent patch levels, and the exact patch level may vary
depending on the group. Security patches are especially problematic because they appear at
irregular intervals, and the administrator generally wants to find and install them as soon as
possible after they become available.

This paper describes Cro-Magnon, a system for automating the process of patch
downloading and application. Cro-Magnon can be configured with a list of patch sites and will
mirror those sites, downloading new patches as they are detected and notifying the administrator
of the downloads. Cro-Magnon can verify patch authenticity and can maintain patch data for
multiple machine groups and architectures, all with different administrators.

The Cro-Magnon architecture is intended to be as flexible as possible. It allows for
multiple download methods such as FTP and HTTP and multiple authentication schemes like
MD5 and PGP. Although it currently deals primarily with patch downloading and notification, it
is intended to be extended to allow automated patch application and maintenance.

Introduction

System administrators must often maintain large
networks of heterogeneous systems. In order to keep
the network as secure as possible, it is important that
the system administrator be aware of the latest ver-
sions of all security patches as soon as they become
available. In addition, administrators must often keep
operating systems as well as applications up-to-date
with the latest bug fixes. In some cases (especially for
software development environments), the administra-
tor must even maintain all machines in one logical
group at one consistent patch level, while machines in
another group are maintained at a different level.

For a large network, the amount of work
involved in patch management can quickly become
overwhelming. System administrators may not have
time to locate and download security patches until
days or weeks after a security advisory is first issued.
This can cause periods of dangerous insecurity for the
network. In addition, when the network is composed
of multiple types of operating systems, each with sev-
eral patch sites, it becomes easy to miss some sites
altogether, so that some fixes are never installed at all.

Cro-Magnon is a system that automates the pro-
cess of patch gathering in two ways: first, it will
search a specified list of Internet sites for patches and
automatically download, verify, and notify the admin-
istrator about the patches. This enables the administra-
tor to find out about new security and bugfix updates
promptly and reduces the chance that any one site will
be overlooked. Second, Cro-Magnon is ultimately
intended to simplify the process of applying patches

and distributing them to select groups of machines.
This paper describes a full (although simple) imple-
mentation of the first goal.

Functional Overview

Cro-Magnon has two distinct modes of opera-
tion. The primary mode is as a daemon, for periodic
background checking and notification of new patch
status. Cro-Magnon can also run in an interactive
mode, giving a ‘‘users-eye’’ view into the current state
of the configured systems and applications and their
available patches. Downloaded patches are stored in a
hierarchical layout in the filesystem, separated by sys-
tem architecture and applications.

In daemon mode, Cro-Magnon detaches from the
shell and runs in the background, periodically waking
up and checking to make sure that its patch database is
up to date with the latest patches available for its con-
figured systems and applications. If a new patch is
found, it is automatically downloaded into the filesys-
tem, optionally verified via MD5 or PGP signature file
(as defined by the configuration) and the system
administrator is notified (typically by email) of the
patch’s arrival. This mode allows a system administra-
tor to start Cro-Magnon from a startup script and let
Cro-Magnon automate the generally routine job of
checking vendors and distribution sites for the latest
patches.

Interactively, Cro-Magnon provides a simple
console-based user interface so that a system adminis-
trator can examine the current state of the configured
systems. The user interface provides the rudimentary

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 87

Cro-Magnon: A Patch Hunter-Gatherer Bargen and Taplin

ability to view the known systems, machine groups,
and applications that are currently monitored, and the
various patch levels that Cro-Magnon has detected for
them.

System Architecture

The Cro-Magnon system is composed of a core
‘‘Engine’’ module, written in Perl, surrounded by vari-
ous plug-in Perl modules (Figure 1). Most of the func-
tionality of the system is supplied by the plug-ins,
including patch downloading, patch verification,
administrator notification, and the user interface. The
goal of this design is to allow customized behaviors
for any or all of the basic functions of the system, sim-
ply by writing modules that follow a documented API.
The only functions in the Engine are those which wire
the plug-ins together using the configuration file and
the main event loop for the daemon mode.

Engine.pm

Console.pm

SimpleVerify.pm

MD5Verify.pm
FTP.pm

AuthenticationDownloading

HTTP.pm

PGPVerify.pm

Web.pm Tk.pm

User Interface

EmailNotify.pm

Notification

Figure 1: The Engine and sample plug-ins

The configuration file divides the network up
into ‘‘Systems,’’ which are logically distinct hardware
and/or software architectures; ‘‘Applications,’’ each of
which may represent a single application, an applica-
tion suite, or the operating system itself; ‘‘Sites,’’
which are locations such as FTP and Web sites from
which patches may be downloaded; and ‘‘Groups,’’
which associate a list of machine host names with a
list of Applications, each of which may have a version
number associated with it, so that different versions
can be tracked for different groups or systems.

Each Application is associated in the config file
with a number of Sites, each of which is associated
with both a download module that tells it how to
retrieve patches from that Site and a verification mod-
ule that tells it how to verify the patches once they
have been downloaded. Examples of possible down-
load module functionality include anonymous FTP,
FTP using a certain ‘‘registered user’’ account, HTTP,
or even copying files from another directory on the

same system. The most general approach is to retrieve
every file in a directory, however, modules can be spe-
cialized to download specific files or filetypes as each
situation requires. Examples of verification modules
are MD5 or PGP verification, or ‘‘Simple’’ (no verifi-
cation).

All patches are stored in a hierarchically struc-
tured section of the filesystem. The patch root direc-
tory is defined in the configuration file; one subdirec-
tory exists under this root for each defined System. In
a System’s directory, each Application has a subdirec-
tory. This subdirectory in turn contains one directory
for each Site containing Application patches. This
allows patches to be stored indefinitely for each
remote site with no danger of overlap.

When running in daemon mode, Cro-Magnon
will run in the background and will periodically wake
up and download updates from the Sites it knows
about. The system may be run as a daemon, in which
case it will wake up periodically after an interval spec-
ified on the command line; or it may be told to run
only once via a command-line flag. In the latter case,
it is assumed that a tool like cron will be used to run
Cro-Magnon periodically. This approach gives the end
user maximum flexibility as to how the system is run.
The download strategy is defined by the individual
download module but should generally follow a ‘‘FTP
mirror ’’ strategy: a file is downloaded if it is new or if
it has changed since the previous download of that
file. If any files are downloaded from a specific Site,
they will be verified using the Site’s verification mod-
ule. A download report listing the files downloaded,
the Site they were downloaded from, and their new
location in the patch database will then be generated
and sent to the Group administrators interested in
those files.

In interactive mode, Cro-Magnon functions as a
patch viewer. The user can specify the exact System,

88 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

Bargen and Taplin Cro-Magnon: A Patch Hunter-Gatherer

Group, and Application of interest, and may then see
all the downloaded patches for the application and
Cro-Magnon’s best guess as to which of them are
installed. This ‘best guess’ is dependent on the ability
of the software to determine the current version of a
given application that has been installed, directly
through Cro-Magnon, or possibly from additional
information provided by the operating system for
‘‘manual’’ updates. Since there is little consistency in
version identification across applications and operat-
ing systems, a version module must be used to return
the current version of an application. For example, the
Linux kernel version can usually be found using
‘uname -rv’ while perl and gcc both support a ‘-v’
flag. In addition, interactive mode serves as a frame-
work for many of the desired future extensions to the
system (see ‘‘Future Enhancements’’).

System TestSys
 Application TestApp1
 Site TestSite1
 Location ftp://ftp.h2net.net/pub/nvb/test
 Location ftp://ftp.somewhere.com/pub/mirrors/h2net/nvb/test
 ToDownload FTP.pm
 ToVerify SimpleVerify.pm
 EndSite

 Site TestSite2
 Location ftp://ftp.freebsd.org/pub/FreeBSD/CERT/patches/SA-97:06
 ToDownload FTP.pm
 ToVerify SimpleVerify.pm
 EndSite
 EndApplication

 Application TestApp2
 Site TestSite3
 Location ftp://metalab.unc.edu/pub/gnu/grep
 ToDownload FTP.pm
 ToVerify SimpleVerify.pm
 EndSite
 EndApplication

 Group TestGroup1
 Machines
 saclass saclass-5
 EndMachines
 CurrentVersions

 TestApp1 Version-v saclass
 TestApp2 Version-RCS saclass

 EndVersions
 Administrator jbargen@acm.org
 Administrator taplin@cs.colorado.edu
 ToNotify EmailNotify.pm
 EndGroup
EndSystem

DefaultSystem TestSys
DefaultGroup TestApp1
DefaultApplication TestGroup1

Figure 2: Sample Config File

Software Architecture

For any system administrator who has had to
deal with a heterogeneous network, a primary concern

for a ‘‘universal’’ tool is portability. To maximize the
portability and extensibility of the Cro-Magnon sys-
tem, it has been designed in the Perl language using
extensible modules that provide a skeletal API frame-
work. This framework, coupled with a flexible config-
uration file format, allows implementation modules to
be specialized for unique environments.

The config file is built up from hierarchical key-
words which define various records that describe the
user ’s system, groups and applications. At the highest
level, the ‘‘System <system name>’’/‘‘EndSystem’’
keywords delimit a system description, and ‘‘Default-
System <system name>’’, ‘‘DefaultGroup <group
name>’’ and ‘‘DefaultApplication <application name>’’
keywords specify which system, group, and applica-
tion (if any) will be selected as the defaults for interac-
tive behavior.

An Application record is delineated by the
‘‘Application <application name>’’/‘‘EndApplica-
tion’’, and specifies a number of sites to check for

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 89

Cro-Magnon: A Patch Hunter-Gatherer Bargen and Taplin

patches. Each site record is offset by a pair of ‘‘Site
<site name>’’/‘‘EndSite’’ tags, and is composed of one
or more locations designated by a ‘‘Location <URL>’’
entry (multiple locations designate multiple mirror
sites), the module to be applied for the download
mechanism ‘‘ToDownload <module name>’’, and the
module to be applied for verification of the trustwor-
thiness of a patch (for example MD5 checksum verifi-
cation) denoted by the keyword pattern ‘‘ToVerify
<module name>’’.

A Group record is bounded by a pair of ‘‘Group
<group name>’’/‘‘EndGroup’’ keywords, and contains
a machine list between a set of ‘‘Machines’’/‘‘EndMa-
chines’’ tags, one or more ‘‘Administrator <email
address>’’ keyword pairs, and a list of applications
and versions that are currently installed. This applica-
tion list is formatted between ‘‘CurrentVersions’’/
‘‘EndVersions’’ tags, with an application name fol-
lowed by the name of (and arguments to) a module
which will return the current version. The version
information is intended to be used to determine if a
newly-found patch is of interest to the application,
narrowing the selection criteria for notifying the
appropriate administrators. The type of notification is
specified by a ToNotify keyword.

The Engine can run autonomously as a daemon,
checking sites for new patches, or interacting with a
specified Display component, for example, a Console
display. Display interaction is done through a callback
mechanism, to allow for the development of graphical
interfaces in the future. This opens up the possibility
of specialized Displays that interact with the Engine
through a Perl/Tk GUI, or even a Java GUI, which
could be embedded in a web page for remote adminis-
tration over a secure network connection.

Major Software Components

Each of the components of the CroMagnon sys-
tem is composed of one or more Perl modules. All of
the modules except for the Engine may be overridden
by derived modules.

Engine
The Engine module is a stand-alone module pro-

viding the core functionality of the system. It is the
only module that may not be overridden by a derived
class. It is the glue that binds the rest of the modules
together via the config file. The Engine’s primary
functions are parsing the config file to understand the
Systems, Groups, and Applications that are specified,
knowing (from the configuration) which modules to
delegate to when dealing with each of these specifica-
tions, and whether to run in daemon mode to find and
gather patches, or to interact with a user.

The initialization and reading of the config file is
common to both operational modes, but the behavior
of the Engine changes dramatically depending on the
mode in which it is run. Running in daemon mode

causes the Engine to detach from the console and peri-
odically wake up and check for new patches. It pro-
cesses each System in turn, finding and downloading
new patches. The Engine then examines each Applica-
tion’s new patches and determines if there is a Group
that is interested in that patch. If so, the Engine noti-
fies that Group’s administrators that the patch has
been downloaded, verified, and is available for instal-
lation from a given directory. Sending a SIGHUP to
the daemon causes it to re-read and re-parse the con-
figuration file to pick up any recent changes, and then
continue on its merry way.

In interactive mode, the Engine interacts with a
Display component, providing configuration and patch
information as described in the following section.

Display

The display component provides a user interface
to the Cro-Magnon system. Although there is not
much a user can currently do interactively, this serves
as a placeholder for the functionality described later
under ‘‘Future Work.’’ The only user interface that is
currently provided is a simple command-line display,
but the architecture will support any interface that can
be set up to use an ‘‘event loop’’ style of operation,
including a conventional GUI using a package such as
Perl/Tk, or even a separate process communicating
with the Engine via a socket stream.

The display component interacts with the Engine
by use of a dual-callback mechanism. The display runs
an event loop which waits for user input. The user
enters a request, which causes the display component
to call a function in the Engine. The Engine does
whatever processing is required, and invokes a call-
back function in the display that does whatever is
required to inform the user of the Engine’s actions.
When the callback function returns, the display com-
ponent goes back into its event loop.

In order to create a new display module, an
implementor must override the Display abstract base
class. There are a number of functions which must be
overridden in this class, most of which are callbacks
from the Engine. The display architecture does not
specify anything about its interaction with the user;
this is left entirely up to the display implementation.
This allows concepts such as a ‘display’ component
whose ‘user’ is actually a separate process.

Download

The download component is responsible for
retrieving patch files and their verification signatures
and storing them in the filesystem. The only download
component currently supplied with the system is a
simple anonymous FTP mirroring system that down-
loads everything it finds in a given directory. How-
ever, the interface supports practically any kind of
download that can be represented by a standard URL
for new means of downloading files, and new modules
can be derived which are more selective about which

90 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

Bargen and Taplin Cro-Magnon: A Patch Hunter-Gatherer

files are downloaded. For example, a ‘‘Solaris-
PatchFTP’’ module could be implemented that knows
exactly which files on a Sun FTP site are applicable
Solaris patches, and only retrieves those files. The
generic FTP module puts more power and responsibil-
ity in the hands of the user, since the user has to
decide which files have meaning and deal with them
appropriately. Because this ‘‘sledgehammer ’’ approach is
not always desirable, the download mechanism can be
easily refined and extended to make Cro-Magnon a
more delicate tool.

In order to create a new download component, an
implementor needs to provide only two functions: a
constructor, which takes a URL and does any required
parsing and initialization, and a download method
which retrieves the file. The basic FTP module breaks
this method up into several submethods, any of which
can be individually overridden. This allows for exten-
sions as simple as recursive mirroring of subdirecto-
ries or usage of an FTP site which requires a customer
login, or as complex as transferring files via HTTP or
from a CD-ROM.

Verification
The verification component is responsible for

performing security authentication of the trustworthi-
ness of a downloaded file. Two examples are a ‘‘Sim-
ple’’ verifier and a MD5 checksum verifier. The sim-
ple verifier just trusts all files to be secure. The pri-
mary purpose of this module is to serve as a place
holder and define the expected API for future authen-
tication schemes, but it also works for a patch site that
is implicitly trusted. The MD5 checksum verifier cal-
culates the checksum of the downloaded patch, and
compares it against a downloaded checksum before
giving approval for the file. The verification interface
is generic enough that it can support many other veri-
fication schemes, including PGP signature verifica-
tion.

To implement a new verification scheme, the
module requires only two functions: a constructor
which does any required initialization, and a verify
method, which takes an array of filenames to be
checked, and returns an array which is the subset of
filenames which have passed verification. This allows
the user to pass in any required files, such as the patch
file and the MD5 checksum (or PGP signatures), use
them as needed to perform the verification, and return
the patches which have passed.

Notification
The notification component takes a list of admin-

istrator IDs and a list of downloaded patches and noti-
fies those administrators that the patches have been
received. The currently supplied notification module
does email notification and assumes that the adminis-
trator IDs are email addresses. However, since the ID
is free-form text, it may represent anything relevant to
the appropriate module: for example, if a notification
module is used that writes a message to the

administrators’ workstation consoles, the administra-
tor IDs could be machine names.

Related Work

Although we presume that most large networks
use homegrown automated tools to provide many of
the functions included in Cro-Magnon, little has been
published about such systems. One goal of the Cro-
Magnon project is to provide a freely-available alter-
native to reinventing the wheel at every new site.

One of the most commonly-used such solutions
is some variation on one of the widely-available ‘‘mir-
ror ’’ packages. These systems mirror various FTP
sites to local directories as Cro-Magnon does, but have
no built-in capability for patch verification or notifica-
tion of administrators. In addition, many vendors have
convoluted FTP structures that cannot be handled by
simply mirroring a directory. Cro-Magnon modules
can be written to deal with these sites, but no easy
alternative exists with mirror packages.

Another solution that is fairly easily imple-
mented is a combination of cron and the GNU wget
package, which can recursively mirror Web and FTP
sites. Wget offers many benefits over a simple mirror-
ing strategy including the ability to do wildcard
matching on filenames and good handling of slow or
unstable connections. However, the cron/wget combi-
nation does not automatically support patch verifica-
tion or administrator notification. Some sort of addi-
tional functionality must be added to provide these
capabilities. Wget’s strengths could be utilized by
Cro-Magnon by creating a download module that calls
wget.

A more complete home-grown system is the
SAGE-AU (System Administrators Guild of Aus-
tralia) FTP site (ftp://ftp.sage-au.org.au/), which per-
forms local mirroring of system patches. This system
was developed (and is only used) in-house by SAGE-
AU. SAGE-AU uses a publicly available ‘mirror’ Perl
script to handle the mirroring of patches to a central
location. This script is launched multiple times in par-
allel, one process for each site, to prevent efficiency
bottlenecks and to prevent crashing the whole system
if a single connection is hung or broken. Currently, a
SQL database is created from the output of the mirror-
ing script. Another process compares this database
with the registered interests of each user of the system,
and email is generated to notify the appropriate users.

Because the purpose of this system is to mirror
available patches, rather than directly gather the
patches for installation by an end user, there is no need
for the SAGE-AU system to authenticate the patches it
mirrors. The end user will want to authenticate these
patches, just as they would from any other internet site
(even if the SAGE-AU administrators are the end
users). Even though the purpose of the SAGE-AU sys-
tem differs from that of Cro-Magnon, Cro-Magnon’s
robustness and efficiency could be improved by

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 91

Cro-Magnon: A Patch Hunter-Gatherer Bargen and Taplin

studying the design of the SAGE-AU system. The
most immediately applicable improvement is the par-
allelization of mirroring sites, but some useful insights
might also be gained by studying the mirror script and
database at the heart of SAGE-AU.

Though built to serve quite a different purpose
than Cro-Magnon, the system monitoring tool called
Pulsar [4] uses a somewhat similar architecture to pro-
vide extensibility and flexibility. Pulsar, written in
Tcl/Tk, periodically monitors the health of various
components of a computer system using modules
specified in a configuration file and reports problems
to the user by means of a configurable ‘‘pulse moni-
tor.’’ The monitors that are used, the frequency with
which they are activated, and the definition of what
constitutes an ‘‘alarm’’ are all configured indepen-
dently by the user.

This design is very similar to Cro-Magnon’s in
that it provides a great deal of flexibility through the
use of pulse monitors which interact with the sched-
uler and display using a simple API. Like Cro-
Magnon’s modules, Pulsar’s pulse monitors may eas-
ily be extended by end users to provide any degree of
functionality desired. It is interesting to see how a
similar design can be independently applied to two
systems with such dissimilar purposes. Further exami-
nation of Pulsar’s design is warranted.

Future Enhancements

Cro-Magnon has a long list of desired future
enhancements; these include:

• Improve system speed and robustness
• Split the monolithic config file into sev-

eral smaller files
• Determine patch dependencies, so that

any other required patches are also
downloaded, and their dependencies
noted when notifying the administrator

• Bullet-proof the system as much as pos-
sible, to avoid single points of failure

• Parallelization of site access
• Deal with the situation in which a ven-

dor revokes a patch that was previously
available

• More modules
• FTP user/password authorization
• HTTP transfers
• Copies from another directory on the

same network
• Secure transfers via scp/sftp
• PGP signature verification

• Display improvements
• Perl/Tk or Java GUI
• Web-based interface
• Retrieval and viewing of patch docu-

mentation
• Automated patch application

• Determination of whether a given patch
is already installed

• Patch chaining – cannot install patch y
until patch x is installed

• Automated patch distribution
• Possibly using rdist, or a ‘reverse rdist’

type of system

Obtaining the Software

Cro-Magnon is still considered pre-alpha release
software, and as such is not yet widely available.
Please contact the authors for the current software
location.

Cro-Magnon requires Perl and several of its
modules in order to run. A full listing of requirements
is included in the software distribution. All modules
may be downloaded from CPAN at www.cpan.org.
Minimal requirements are:

• Perl 5.004 or better
• The Sys::Syslog module (standard with the Perl

5.004 distribution)
• The Digest::MD5 module (for MD5 verifica-

tion)
• The libnet module package (for anonymous

FTP downloads)

Acknowledgments

Dan Farmer was helpful in critiquing our design
and ideas about the system. He has had many helpful
suggestions, most of which we have not yet had time
to implement. His suggestions helped us to stay
focused on the useful functionality of the system
rather than on bells and whistles.

David Conran was willing to share information
about the design and inner workings of the SAGE-AU
ftp site, which gave us several good ideas for improv-
ing Cro-Magnon with respect to efficiency and speed.

The authors of the Net::FTP module (Graham
Barr) and the Digest::MD5 module (Gisle Aas) have
saved us a lot of work, and we are forever in their
debt.

The Perl Cookbook by O’Reilly and Associates
had many solutions to problems we encountered in our
implementation, including how to detach from the
shell for daemon mode and a concise way to parse
config file lines.

Our LISA shepherd, Adam Moskowitz, had
many useful suggestions for improving the quality of
this paper, as did the anonymous referees who cri-
tiqued this paper. We are grateful for their help.

And finally, we would like to thank Evi Nemeth,
who taught the graduate course in Systems Adminis-
tration at the University of Colorado, where all this
began, and who encouraged us to submit our work to
LISA.

Author Information

Jeremy Bargen recently completed his graduate
studies at the University of Colorado, Boulder, with a

92 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

Bargen and Taplin Cro-Magnon: A Patch Hunter-Gatherer

MS-CS. He currently works for Raytheon Systems
Company in Aurora, Colorado, where he is a Senior
Software Engineer in the Mission Management Sys-
tems organization. Reach Jeremy via U.S. Mail at
Raytheon Systems Company; Bldg. S75, M/S A2707;
16800 East Centretech Parkway; Aurora, CO 80011.
Or reach him electronically at jbargen@acm.org.

Seth Taplin is pursuing part-time studies for a
MS-CS at the University of Colorado, Boulder. He
currently works for CiTR, Inc. in Boulder, Colorado,
where he is a Senior Software Engineer providing cus-
tom software solutions for a variety of domains. Reach
Seth via U.S. Mail at CiTR, Inc; 1200 28th Street;
Suite 305; Boulder, CO 80303. Or reach him electron-
ically at staplin@acm.org.

References

[1] Dan Farmer, personal communications, April
1999.

[2] Perl Cookbook, O’Reilly and Associates.
[3] CPAN documentation for Perl modules,

http://www.cpan.org .
[4] R. A. Finkel, ‘‘Pulsar: An Extensible Tool for

Monitoring Large Unix Sites,’’ Software Practice
and Experience, Vol. 27(10), 1163-1176.

[5] David Conran, personal communications, August
1999.

[6] R. L. Rivest, RFC 1321: The MD5 Message-
Digest Algorithm, April 1992.

[7] M.I.T. PGP Distribution, http://web.mit.edu/network/
pgp.html .

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 93

94 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

