
USENIX Association

Proceedings of the
LISA 2001 15th Systems

Administration Conference

San Diego, California, USA
December 2–7, 2001

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

A Probabilistic Approach to Estimating
Computer System Reliability

Robert Apthorpe – Excite@Home, Inc.

ABSTRACT

Probabilistic Risk Assessment (PRA) is a method of estimating system reliability by
combining logic models of the ways systems can fail with numerical failure rates. One postulates a
failure state and systematically decomposes this state into a combination of more basic events
through a process known as Fault Tree Analysis (FTA). Failure rates are derived from vendor
specifications, historical trends, on-call reports, and many other sources. FTA has been used for
decades in the defense, aerospace, and nuclear power industries to manage risk and increase
reliability of complex engineering systems. Combining FTA with event tree analysis (ETA), one
can associate failure probabilities with consequences to clearly communicate risk both pictorially
and numerically. Basic PRA techniques can help increase the reliability and security of computer
systems.

Introduction

As system administrators, our primary responsi-
bility is to maximize the availability of the systems in
our charge. This responsibility is a constant challenge,
exacerbated by economic and competitive pressure,
the continuing rapid growth of the Internet, and insti-
tutions’ increasing reliance on network services. As
systems become more ubiquitous and more important
to an organization, more emphasis is placed on relia-
bility [1].

Often we desire a quantitative measure of relia-
bility. We are inundated with diagnostic information
and in recent years have focused on data analysis.
Unfortunately, this data is only a historical record; it
tells us little about underlying system behavior, depen-
dencies, or latent vulnerabilities, and its predictive
value is limited.

The computer industry lags behind other indus-
tries in terms of risk assessment methodologies. We
rarely assess risk formally, usually only when design-
ing a system. System administrators lack the most
basic means of comprehensively analyzing and quanti-
fying risks to the systems they maintain.

We seek a formal approach to risk assessment
that offers a qualitative understanding of system
behavior and vulnerability. The approach should be
systematic and comprehensive, producing quantitative
measures of risk and component importance consistent
with observed historical data. We want a technique
that produces lasting benefits for the effort spent and
that can be understood and applied by the average sys-
tem designer or administrator. Above all, we desire a
method with an established record of success.

One such technique is Probabilistic Risk Assess-
ment (PRA), a systematic method of enumerating the
ways a system can fail. PRA considers both probabil-
ity and consequences of individual events, affords a
scalable level of detail, and can model human reliability

as well as software and hardware reliability. Developed
in the 1960s, PRA has seen widespread use in the
aerospace, defense, and nuclear power industries [11].

Intent

This paper serves as a brief tutorial on event tree
analysis (ETA) and fault tree analysis (FTA). I will
model a typical mail receipt system using ETA, then
decompose one event into a fault tree. I will quantify
the fault tree and show metrics that help analysts esti-
mate the importance of components. Finally, I will
discuss limitations of the method and suggest areas for
future study and research.

The techniques I describe have developed over
the last 40 years and combine such fields as probabil-
ity theory, graph theory, systems engineering, opera-
tions research, and statistics [19] [20]. Despite the age
of technique, introductory material on PRA is scarce.
Often PRA techniques are only taught at the graduate
level making the subject even less accessible, espe-
cially to practicing technologists.

Reliability analysts must thoroughly understand
the systems they model from the high-level systemic
scale down to the component level. They also need
broad knowledge of the interrelationships between
systems and the tenacity to ferret out subtle dependen-
cies. System administrators already have many of
these skills and all that is needed is an introduction to
the technique. PRA reduces risk assessment to a ratio-
nal, mostly mechanical process.

Preliminary Analysis

Most formal risk or reliability assessments start
with these three steps:

1. Identify the hazard
2. Identify relevant systems, components, and

individuals
3. Bound the analysis

2001 LISA XV – December 2-7, 2001 – San Diego, CA 31

A Probabilistic Approach to Estimating Computer System Reliability Apthorpe

While this may seem simplistic and obvious, it’s
vitally important to know at the outset which events
one is concerned with, which systems are to be ana-
lyzed, and the level of detail one will consider.

Example: Inbound Mail Transport
An organization (wazmo.org) considers it vital

that no inbound mail is ever irrevocably lost. Review-
ing the mail transport process [14, 15, 16, 17] we see
the following relevant systems, components, and indi-
viduals:

• Remote sender
• Remote user host
• Remote MUA (mail user agent, e.g., client soft-

ware)
• Remote MTA (mail transport agent, e.g., mail

server software)
• Remote network
• The Domain Name System (DNS)
• The Internet
• wazmo.org’s ISP
• Local network
• Local MTAs
• Local user host
• Local MUA
• Local recipient

Expanding our scope, we can consider the fol-
lowing:

• Power transmission and distribution network
• On-site environment (temperature, humidity,

etc.)
• Off-site environment (likelihood of fire, flood,

ice storm, earthquake, etc.)
• Human activity (inept or malicious)
• Extraterrestrial activity (solar flares, magnetic

storms, etc.)
• Political climate (civil unrest, war)

As esoteric as some of these items seem, there’s
ample anecdotal and documentary evidence of sys-
tems being challenged by each of them [12] [13].
Emergency response organizations often rely on
pagers which in turn rely on satellite systems; the reli-
ability of pager networks is frequently taken for
granted despite occasional outages due to satellite mis-
configuration and solar flares. The same is true for
systems such as the national electric power grid and
the public switched telephone network.

To simplify our analysis we will only model por-
tions of wazmo.org’s local site, their ISP (mail servers,
name servers), and the Internet (the connection from
wazmo.org to cynistar.net, its ISP.)

The mail servers are listed in DNS
(db.wazmo.org) in decreasing preference as follows:
wazmo.org 1D IN MX 10 shaft.mx.wazmo.org.

1D IN MX 20 dolomite.mx.wazmo.org.
1D IN MX 30 mta00.cynistar.net.

This shows two internal mail servers (shaft and
dolomite) and an external backup mail server (mta00.)
Shaft is the primary with a preference of 10, dolomite

is secondary with a preference of 20, and mta00 is ter-
tiary with a preference of 30.

Sender
MTA

Remote site

Recipient

Local site
(wazmo.org)

Internet

MTA
(MX2)

DNS

ISP
(cynistar.net)

NET
(connecting wazmo.org
 to the outside world)

MTA
(MX1)

Figure 1: Simple mail transport model.

Fundamentals of Event Tree Analysis

An event tree is a diagram of all the events that
can occur in a system, a graphical form of truth table.
Event tree analysis is an inductive approach, in that it
answers the question ‘‘What if event X happens?’’
One starts with an initiating event (root node) on the
left side of the diagram proceeding though a series of
branch points that represent the occurrence and magni-
tude of particular events. Each of the branches has an
associated probability or split fraction. The end states
(leaf nodes) represent the combination of events lead-
ing to a particular consequence. The result is a tree
structure that clearly shows the events leading to par-
ticular consequences and allows a quantitative mea-
sure of risk to be derived without much effort. This
technique is best illustrated with an example.

Event Tree Construction
Start by defining the consequence of interest and

systems or functions relating to that consequence. In
this case, we define the consequence as ‘‘loss of
inbound mail’’ and we choose the systems to be:

• DNS: can the domain name system resolve the
appropriate destination for inbound mail
(specifically MX records)?

• NET: can remote hosts reach local mail
servers? Can local users reach local mail
servers?

• MX1: are local (primary) mail servers accept-
ing mail?

• MX2: are remote (secondary) mail servers
accepting mail?

32 2001 LISA XV – December 2-7, 2001 – San Diego, CA

Apthorpe A Probabilistic Approach to Estimating Computer System Reliability

Our initiating event is ‘‘mail sent to wazmo.org.’’
This is a high-probability event for all but the smallest
domains. Combining these events, we construct a
basic event tree, one containing all possible branches.
Some states make no sense and can be eliminated,
leading to a reduced event tree. For example, if DNS
cannot resolve the address of the receiving MTA
(either MX1 or MX2), the states of the local network,
and primary and secondary mail servers are irrelevant.
If DNS, NET, and MX1 are available, the state of
MX2 is irrelevant since mail will be delivered to MX1
and there will be no demand for MX2. Finally, if the
local network (NET) is unavailable, the state of MX1
is irrelevant; once the connection attempt to MX1 fails
the sending MTA will try MX2 next. The reduced
event tree tersely and clearly explains a fairly complex
system.

MAIL DNS NET MX1 MX2

Success

Consequence

S

S

Failure

S

S

S

S

S
F

F
F

F
F

F

S

S
S

S

S

S

S
F

F
F

F
F

F

OK

Delayed

Lost

OK

Delayed

Delayed

F

F

Lost

Lost

Lost

Lost

Lost

Lost

Lost

Lost

Lost

Lost

Seq.
#

1

8

9

10

7

6

5

4

3

2

11

12

13

14

15

16

Figure 2: Basic event tree.

We can estimate reliability with an event tree by
associating probabilities with each branch point. For
example, we could send test messages to MX1 and
MX2 and record the number of failures to estimate the
reliability of the mail exchangers. If the reliability of
DNS is given as PDNS, reliability of the site’s network
and internet connectivity (NET) is PNET, and reliabil-
ity of MX1 and MX2 are given by PMX1 and PMX2
respectively, the probability of prompt mail delivery
(sequence #1 in Figure 3) is

Pok = P1

= PMAIL × PDNS × PNET × PMX1 ×
(PMX2 + (1 − PMX2))

= PMAIL × PDNS × PNET × PMX1

where PMAIL is the probability that inbound mail will
arrive during the interval of interest. The probability
of mail being delayed (assuming a delay in transport
from MX2 to MX1 when it is eventually repaired) is
the sum of the probability of sequences #2 and #4
from Figure 3:

P2 = PMAIL × PDNS × PNET × (1 − PMX1) × PMX2

P4 = PMAIL × PDNS × (1 − PNET) × PMX2

Pdelayed = P2 + P4

= PMAIL × PDNS × PMX2 × (1 − PNET × PMX1)

And finally,
PLOST = P3 + P5 + P6

= (1 − (P1 + P2 + P4))

= (1 − Pok − Pdelayed)

In this simple case each branch point has only
two states {Success, Failure}; it is possible to have
more than two states per event. For example, we could
add a third state to MX1 and MX2 – {Success,
Degraded, Failure} – and model another situation in
which inbound mail is delayed. The sum of each
state’s probability at a branch point must add up to
unity to encompass all possible events (e.g., DNS
either works or it doesn’t; MX1 is either fully-func-
tional, degraded, or failed; there are no other states
than the ones we consider.) Also, the probabilities do
not need to be consistent along different paths, that is,
PMX2 in sequences #2 and #3 need not have the same
value as PMX2 in sequences #4 and #5. However PMX2
must be consistent in sequences #2 and #3 since by
definition PMX2success

+ PMX2failure
≡ 1 at each branch

point.

MAIL DNS NET MX1 MX2

Success

Consequence

S
S

Failure

S

S
F

F
F

Delayed

Lost

OK

Delayed

F
Lost

Lost

Seq.
#

2

6

5

4

3

1

Figure 3: Reduced event tree.

The next task is to derive numerical values for
each of these failure probabilities. One may estimate
probabilities or use observed data but in more sophis-
ticated models these values are derived from fault tree
analyses.

Fundamentals of Fault Tree Analysis

The most common PRA technique is fault tree
analysis (FTA). A fault tree is a logical model of the
various parallel and sequential combinations of faults
that will result in the occurrence of a predefined

2001 LISA XV – December 2-7, 2001 – San Diego, CA 33

A Probabilistic Approach to Estimating Computer System Reliability Apthorpe

undesired event. This event (known as a top event due
to its position in the tree) is linked to more basic
events through a number of intermediate events and
logic gates detailed below. Fault tree analysis is a
deductive technique which asks ‘‘How can event X
occur?’’

Fault trees provide a detailed graphical explana-
tion of system behavior. In this respect, fault trees are
a communication tool that can effectively explain
complex systems to those not intimately familiar with
the details of a system’s design.

Concepts and Definitions
Most of this information is summarized from

NUREG-0492 [2] and [19, 20]. It has been reordered
somewhat for clarity.

Faults vs. Failures

For modeling purposes, we distinguish between
failures (basic abnormal occurrences) and faults
(higher-order undesirable events.) Component failures
are a subset of a larger class of events known as faults.
This helps us distinguish between more concrete basic
events and more abstract intermediate events. The rea-
son for this distinction will become clear later, espe-
cially in the case of command faults.

State-of Fault Categories

Faults may be categorized as state-of-component
faults or state-of-system faults. State-of-component
faults suggest the fault should be decomposed into pri-
mary, secondary, and command faults. State-of-system
faults are often caused by action outside a component
and suggest that further decomposition of the fault is
necessary. The decomposition process for state-of-sys-
tem faults is not as mechanical as that for state-of-
component faults.

Component Fault Categories

Component faults can be classified as primary,
secondary, and command faults.

Primary faults are faults of a component that
occur when the component is operating within its
design specification, e.g., a web server rated at 50 TPS
(transactions per second) fails at a load of 30 TPS.

Secondary faults are faults of a component that
occur when the component is operating outside its
design specification, e.g., a web server rated at 50 TPS
(transactions per second) fails at a load of 90 TPS.

Command faults result when a component prop-
erly performs its intended function but at the wrong
time or place, e.g., the fire suppression system in a
data center discharges due to a spurious or premature
signal from a detector or controller.

Events

Events can be categorized as top, intermediate,
or primary, depending on their position in the fault
tree. In computational tree terminology, primary
events are leaf nodes and top events are root nodes.
Primary events are further subdivided into basic,

undeveloped, conditioning, and external events. Basic
events are are considered atomic and are not expanded
further. These are usually primary, secondary, or com-
mand faults. Undeveloped events are just that; they
indicate events that are not considered atomic but for
reasons of uncertainty or simplicity are not expanded
further. Conditioning events show any conditions or
restrictions on that apply to any logic gate (usually
inhibit or priority-and gates.) External events (sometimes
known as house events) signify events that are nor-
mally expected to occur; they are not faults by them-
selves. They are often used for sensitivity analysis.
Conditioning and external events are rarely used in
practice. See Figure 4 for a summary of event types
and their symbols.

Intermediate
event

Basic event

Undeveloped
event

External
event

Conditioning
event

Primary Event Symbols

Intermediate Event Symbols

Figure 4: Event types.

Gates
The logic gates used in fault tree analysis include

the familiar and, or, and exclusive-or gates. transfer-in
and transfer-out gates are conveniences that allow a
large fault tree to be broken into sections that fit on the
printed page. The inhibit gate is a special form of the
and gate composed of a single input event and a condi-
tioning event. The priority-and gate is a special form of
and gate where the input events must occur in a speci-
fied order (by convention input events must occur in
order from left to right in the diagram.) The m-of-n
gate is true when at least m of the n input events
occur; this gate is used to model voting logic or multi-
ply-redundant systems. Many of these gates are for
convenience purposes. In practice, one can effectively
model systems using only and and or gates, using trans-
fer gates to break up the tree into printable sections.
Figure 5 summarizes these gates and their symbols.
Cutsets

A cutset is a set of basic events which, if they
occur, guarantees the top event will occur. A minimal
cutset is a cutset which, if any event is removed, will
no longer be a cutset (e.g., no longer guarantees the
top event will occur.) The primary purpose of fault
tree analysis is to identify minimal cutsets.

For the curious, ‘‘cutset’’ is a term from graph
theory. Fault tree analysis works in failure space

34 2001 LISA XV – December 2-7, 2001 – San Diego, CA

Apthorpe A Probabilistic Approach to Estimating Computer System Reliability

looking for sets of events that prevent successful oper-
ation. It is possible to convert a fault tree to a con-
nected graph of success events (events that must occur
to ensure successful operation.) The set of events that
disconnect (cut) a connected graph is a cutset [21];
this implies that fault tree analysis may have its origin
in success path analysis (in graph theory parlance, the
fault tree is the dual of a graph of success paths.)
While it’s far beyond the scope of this paper to
explore etymology, history, and graph theory, it may
be helpful to review the underlying mathematics and
history for additional insight.

m

AND

OR

EXCLUSIVE-OR

m-of-n

PRIORITY-AND

INHIBIT

TRANSFER

Figure 5: Gate types.

Fault Tree Construction

The basic steps in performing a fault tree analy-
sis are

1. Define failures of interest (top events), usually
by an inductive process such as event tree anal-
ysis. The combination of fault- and event-tree
analysis is sometimes known as cause-conse-
quence analysis (CCA).

2. Define the systems to be analyzed and the limit
of resolution of the analysis.

3. Build logical models (fault trees) of the events
that lead to each of the top events defined in
Step 1.

4. Evaluate the models to determine the sets of
basic events (minimal cutsets) that lead to each
top event.

5. Optionally, quantify the likelihood of each min-
imal cutset using component failure probabili-
ties.

To explore this technique, we return to our mail sys-
tem analysis. For simplicity, we will only model the
MX1 event show in Figure 3.

Fault Tree Analysis of Inbound Mail Transport
System

We begin the analysis by defining our top event
as ‘‘Local MTA fails to accept mail’’ This fault is

clear, direct, and unambiguous. It is best to phrase
events tersely and directly, usually in a single sentence
containing no more than fifteen to twenty words.
Remember, the top event states what happens; the
fault tree explains how.

Now we define our system. We have two mail
servers and a single dedicated switch in common as
shown in Figure 6.

dolomite
(MTA #2)

shaft
(MTA #1)

mx.wazmo.org
(mail network)

(to border router)(to internal LAN)

foreman
(router)

Figure 6: Physical description of local Mail exchang-
ers (MX1).

The system operates as follows:
1. Incoming mail traffic is routed from the site’s

border routers to the incoming mail network
2. According to DNS, MTA #1

(shaft.mx.wazmo.org) is listed with a prefer-
ence of 10, MTA #2 (dolomite.mx.wazmo.org)
has a preference is 20, and the off-site mail
server (mta00.cynistar.net) is listed with a pref-
erence of 30.

3. Remote mail servers will first attempt delivery
to MTA #1. If MTA #1 will not accept incom-
ing mail, the remote server will try to deliver
mail to MTA #2. Failing that, it will then
deliver mail to the off-site mail server. Undeliv-
ered mail is silently discarded.

Note that we assume no failures in the border
routers and internal networking (NET), the off-site
mail server (MX2) or in DNS. We only concentrate on
the system we’ve defined as MX1; failures in these
other systems will be detected when these systems are
analyzed separately. One benefit of fault tree analysis
is that we can decompose our analysis into smaller,
more manageable pieces.

We can simplify the analysis by making some
assumptions about the components and the system:

1. The mail servers are identical and are capable
of handling all traffic directed to them under
normal circumstances. That is, only one mail
server needs to be available for the system to
perform within its design specification.

2001 LISA XV – December 2-7, 2001 – San Diego, CA 35

A Probabilistic Approach to Estimating Computer System Reliability Apthorpe

2. Failures are permanent. No automated or man-
ual recovery actions are assumed.

3. Components are independent of each other.
This is a very important assumption and will be
discussed later.

4. The router and both mail servers are served by
the same source of electrical power.

5. We only consider faults in the components
under analysis. We do not consider faults due to
problems with cabling or room cooling, nor do
we consider events such as theft, fire, flood,
seismicity, etc.

The definition of a system includes modeling
assumptions and design basis assumptions, the
‘‘design basis’’ being the range of conditions within
which a system is designed to operate.

Next, we construct a fault tree using the rules
described in the Fault Tree Handbook [2]:

• Ground Rule I: Write the statements that are
entered in the event boxes as faults; state pre-
cisely what the fault is and when it occurs.

• Ground Rule II: If the answer to the question
‘‘ C a n this event consist of a component fail-
ure?’’ is ‘‘Yes,’’ classify the event as a ‘‘state-of-
component fault.’’ If the answer is ‘‘No,’’ clas-
sify the event as a ‘‘state-of-system fault.’’ If the
fault event is classified as ‘‘state-of-compo-
nent,’’ add an or-gate below the event and look
for primary, secondary and command modes. If
the fault event is classified as ‘‘state-of-system,’’
look for the minimum necessary and sufficient
immediate cause or causes. A ‘‘state-of-system’’
fault event may require an and-gate, an or-gate,
and inhibit-gate, or possibly no gate at all. As a
general rule, when energy originates from a
point outside the component, the event may be
classified as ‘‘state-of-system.’’

• No Miracles Rule: If the normal functioning of
a component propagates a fault sequence, then
it is assumed that the component functions nor-
mally.

• Complete-the-Gate Rule: All inputs to a partic-
ular gate should be completely defined before
further analysis of any one of them is
undertaken.1

• No Gate-to-Gate Rule: Gate inputs should be
properly defined fault trees, and gates should
not be connected directly to other gates.

The phrase ‘‘immediate, necessary, and suffi-
cient’’ from Ground Rule II requires some clarifica-
tion. We must clearly describe the current state of the
system. Example: a computer is powered through an
uninterruptible power supply (UPS) that holds 20 min-
utes of reserve power. If AC power is lost and does
not recover before the UPS battery drains, the device
fails, and the failure event is written as ‘‘Loss of AC
power,’’ not ‘‘Loss of power for more than 20

1More commonly known as a breadth-first (vs. depth-
first) expansion.

minutes.’’ The immediate cause of the event is loss of
power. The loss of power is sufficient to cause the
event. If the computer has multiple redundant power
supplies, an immediate cause of failure would still be
‘‘Loss of AC power,’’; when that event is expanded,
the necessary and immediate cause is ‘‘Loss of power
from UPS 1 and 2.’’

Some analysts have compiled an additional list
of heuristics to simplify fault tree construction [19].

• Replace an abstract event by a less abstract
event.

• Classify an event into more elementary events.
• Identify distinct causes for an event.
• Couple trigger event with ‘‘no protective

action.’’
• Find cooperative causes for an event.
• Pinpoint a component failure event.

We start by expanding the top event E1 ‘‘Local
MTA fails to accept mail.’’ E1 is a state-of-system
fault so we look for its necessary, immediate, and suf-
ficient causes. We define event E2 as ‘‘Router unavail-
able’’ and E3 as ‘‘Inbound mail service unavailable’’
and combine them into and or-gate. Our tree is now E1
= (E2 or E3). See Figure 7.

Note transfer gates 1 and 2, leading to Figures 8
and 9, respectively. This leads to a bit of jumping
between figures as we follow the Complete-the-Gate
Rule.

Event E2 ‘‘Router unavailable’’ is a state-of-sys-
tem fault so we again look for necessary, immediate,
and sufficient causes. We expand E2 into two events,
E4 ‘‘Router failed’’ and E5 ‘‘Router OOS2 for mainte-
nance.’’ Note we are modeling human action and
operations procedure as well as random failure. See
Figure 8.

Event E3 ‘‘Inbound mail service unavailable’’ is
a state-of-system fault; we model this as E6 ‘‘No MTA
available’’ and E7 ‘‘Common-cause failure of all
MTAs’’ both feeding into an or-gate. Common-cause
failure is a special class of failure which will be dis-
cussed later; this leads from our assumption of compo-
nent independence. Note that E7 is marked with a
small diamond to indicate an undeveloped event. See
Figure 9.

Returning to Figure 8, we see that event E4
‘‘Router failed’’ is a state-of-component fault so we
expand it into primary, secondary, and command faults
all feeding into an or-gate. We find two primary faults
E8 ‘‘Router hardware failure’’ and E9 ‘‘Router soft-
ware failure,’’ two secondary faults E10 ‘‘Router over-
loaded’’ and E11 ‘‘Router loses AC power,’’ and one
command fault E12 ‘‘Router misconfigured.’’

We mark E8 and E9 as basic events and events
E10, E11, and E12 as undeveloped events. The dis-
tinction is somewhat arbitrary since we can choose to
expand any of these events later. In this case, we
decide that we may want to create more detailed

2OOS: Out Of Service

36 2001 LISA XV – December 2-7, 2001 – San Diego, CA

Apthorpe A Probabilistic Approach to Estimating Computer System Reliability

models of power failure, router misconfiguration, and
router overload later and that we’re satisfied with the
rather gross categorizations of router hardware and
software failure. Also, the router hardware and soft-
ware are determined by the router vendor; we ostensi-
bly control AC power, network traffic, and router con-
figuration. Regardless of our categorization of events
as basic or undeveloped, we have finished modeling
intermediate event E2 as a combination of primary
events.

Event E6 ‘‘No MTA available’’ is a state-of-sys-
tem fault. We model E6 as E13 ‘‘MTA #1 failed’’ and
E14 ‘‘MTA #2 failed’’ both feeding into an and-gate.
Note that if we added a third identical MTA, we could
simply duplicate the tree structure beneath E13 under
a new event ‘‘MTA #3 failed.’’ The common-cause
failure event E7 should not change. Caution must be
used when copying parts of the tree to ensure that
nothing has been missed. The value of the Complete-
the-Gate Rule is obvious here.

Following transfer gate 3 from Figure 9 to Figure
10, we can now expand event E13 ‘‘MTA #1 unavail-
able.’’ We can see by our physical diagram and our
assumption that the mail servers are identical that the
expansion of events E13 and E14 will be similar. E13
is similar to E2, in that E13 is a state-of-system fault,
composed of a ‘‘system failed’’ and a ‘‘system OOS’’
event combined into an or-gate (events E15 ‘‘MTA #1
failed’’ and E16 ‘‘MTA #1 OOS for maintenance.’’)
Similarly, we see event E14 ‘‘MTA #2 unavailable’’
expands into E17 ‘‘MTA #2 failed’’ and E18 ‘‘MTA
#2 OOS for maintenance,’’ also combined into an or-
gate in Figure 11.

Event E15 ‘‘MTA #1 failed’’ is a state-of-compo-
nent fault so we expand it into primary, secondary, and
command faults all feeding into an or-gate. We find
two primary faults, E19 ‘‘MTA #1 hardware failure’’
and E20 ‘‘MTA #1 software failure,’’ two secondary
faults, E21 ‘‘MTA #1 out of resources’’ and E22
‘‘MTA #1 loses AC power,’’ and one command fault
E23 ‘‘MTA #1 misconfigured.’’ This is similar in
structure to E4 ‘‘Router failed’’ but we’ve used ‘‘sys-
tem out of resources’’ instead of the more specific
‘‘system overloaded’’ to model events where the mail
server software does not have the resources to accept
all the mail it’s receiving (i.e., there’s too much
incoming mail or there aren’t adequate resources
available.) At some point, we may wish to specify
resources and the effects of their depletion but in this
simple model we will not expand these events further.

Similarly, Event E17 ‘‘MTA #2 failed’’ expands
into two primary faults, E24 ‘‘MTA #2 hardware fail-
ure’’ and E25 ‘‘MTA #2 software failure,’’ two sec-
ondary faults, E26 ‘‘MTA #2 out of resources’’ and
E27 ‘‘MTA #2 loses AC power,’’ and one command
fault E28 ‘‘MTA #2 misconfigured.’’ Our model is
complete now that all the leaf nodes of the tree are pri-
mary events (either basic or undeveloped events.) We
can now generate the cutsets for this tree.

Discussion of Tree Construction

Events E11, E22, and E27 all involve the loss of
AC power and may be considered identical according
to our assumption that all devices are on the same
electrical supply. In a more detailed analysis, one
would probably break out electric power into its own
fault tree, analyzing off-site power, backup generators,
uninterruptible power supplies (UPS), switchgear, and
power distribution units.

E1
Local MTA fails

to accept mail

E3
Inbound mail

service unavailable

E2
Router

unavailable

1 2

G1

Figure 7: MX1 tree 1 (of 5).

E4
Router failed

E2
Router

unavailable

E5
Router OOS

for maintenance

E8
Router hardware

failure

E9
Router software

failure

E11
Router loses
AC power

E10
Router

overloaded

1

E12
Router

misconfigured

G2

G4

Figure 8: MX1 tree 2 (of 5).

Finding Minimal Cutsets

Having developed a fault tree for MX1, we now
can find the minimal cutsets of this tree. In a more
complex analysis, one would use a computer code to
find the minimal cutsets. In this case we will manually
derive them from logical expressions.

2001 LISA XV – December 2-7, 2001 – San Diego, CA 37

A Probabilistic Approach to Estimating Computer System Reliability Apthorpe

E6
No MTA
available

E3
Inbound mail

service unavailable

E7
Common-cause

failure of all MTAs

E13
MTA #1

unavailable

E14
MTA #2

unavailable

2

3 4

G3

G5

Figure 9: MX1 tree 3 (of 5).

E13
MTA #1

unavailable

E15
MTA #1 failed

E16
MTA #1 OOS

for maintenance

E19
MTA #1

hardware failure

E23
MTA #1

misconfigured

E20
MTA #1

software failure

E22
MTA #1 loses

AC power

E21
MTA #1

out of resources

3

G6

G8

Figure 10: MX1 tree 4 (of 5).

The MX1 fault tree reduces to the following set of
equations, where Ei represents the ith intermediate event,
ei represents the ith primary (basic or undeveloped)
event and iis the event number in the fault tree, e.g., e5
represents event E5 ‘‘Router OOS for maintenance.’’

E1 = or(E2, E3)

E2 = or(E4, e5)

E3 = or(E6, e7)

E4 = or(e8, e9, e10, e11, e12)

E6 = and(E13, E14)

E13 = or(E15, e16)

E14 = or(E17, e18)

E15 = or(e19, e20, e21, e22, e23)

E17 = or(e24, e25, e26, e27, e28)

E14
MTA #2

unavailable

E17
MTA #2 failed

E18
MTA #2 OOS

for maintenance

E24
MTA #2

hardware failure

E25
MTA #2

software failure

E27
MTA #2 loses

AC power

E26
MTA #2

out of resources

4

E28
MTA #2

misconfigured

G7

G9

Figure 11: MX1 tree 5 (of 5).

We write top level event E1 in terms of primary
events, using and(event1, . . . , eventi) and or(event1,
. . . , eventi) to represent the logical operations and and or.

E1 = or(E2, E3)

= or(or(E4, e5), or(E6, e7))

= or(or(e8, e9, e10, e11, e12), e5, and(E13, E14), e7)

= or(e5, e7, e8, e9, e10, e11, e12,
and(or(E15, e16), or(E17, e18))

E1 = or(e5, e7, e8, e9, e10, e11, e12,
and(or(e16, e19, e20, e21, e22, e23),
or(e18, e24, e25, e26, e27, e28))

Note that and(or(A, B), or(C, D)) = or(and(A, C),
and(A, D), and(B, C), and(B, D)). In set notation, E1 in
the following cutsets (note: e1e2 = and(e1, e2)):

E1 = or(e5, e7, e8, e9, e10, e11, e12,
e16e18, e16e24, e16e25, e16e26, e16e27, e16e28

e19e18, e19e24, e19e25, e19e26, e19e27, e19e28

e20e18, e20e24, e20e25, e20e26, e20e27, e20e28

e21e18, e21e24, e21e25, e21e26, e21e27, e21e28

e22e18, e22e24, e22e25, e22e26, e22e27, e22e28

e23e18, e23e24, e23e25, e23e26, e23e27, e23e28)

38 2001 LISA XV – December 2-7, 2001 – San Diego, CA

Apthorpe A Probabilistic Approach to Estimating Computer System Reliability

Each term in the or() clause is a cutset implied
by the top event E1. This is neither the set of all cut-
sets nor the set of minimal cutsets. To generate the set
of minimal cutsets we need to remove all cutsets that
contain other cutsets. Our assumption about a com-
mon power supply allows us to consider events E11,
E22, and E27 to be identical. This reduces E1to:

E1 = or(e5, e7, e8, e9, e10, e11, e12,
e16e18, e16e24, e16e25, e16e26, e16e28

e19e18, e19e24, e19e25, e19e26, e19e28

e20e18, e20e24, e20e25, e20e26, e20e28

e21e18, e21e24, e21e25, e21e26, e21e28

e23e18, e23e24, e23e25, e23e26, e23e28)
This is the set of minimal cutsets for tree MX1.

Discussion of Cutsets

We’ve identified seven single points of failure
(SPOF) and 25 two-event cutsets. Six SPOFs relate
specifically to the router and one to the electrical
power system. The two-event cutsets are combinations
of events that fail both mail servers.

While simple inspection of Figure 6 shows the
router as a SPOF, our systematic analysis picks out
specific faults (hardware, software, configuration)
which we might use to drive policy decisions. For
example, we may have stricter controls on router con-
figuration than on mail server configuration. We might
also require that any mail server configuration changes
be applied only to the primary server and only be
applied to the secondary server after some period of
live testing or ‘burn-in’ to reduce the risk of common-
cause failures due to server misconfiguration. Usually
configuration changes are made to increase functional-
ity, security, or reliability so we must weigh the bene-
fits of standardization with the risks of increased com-
mon-cause failure. There is no easy answer to this pol-
icy question, though fault tree analysis has helped to
make this question more apparent. Although we have
no quantitative measure of risk at this point in the
analysis, we have at least enumerated the risks to the
system within the bounds of our analysis.

Note also that we consider unavailability due to
planned maintenance activities. The cutset e16e18
(‘‘MTA #1 OOS for maintenance,’’ ‘‘MTA #2 OOS
for maintenance’’) may be prohibited by procedure; if
it isn’t, it should be. One must balance the benefits of
periodic scheduled maintenance with the risk posed by
these activities. Also, it is inappropriate to discard this
cutset simply because the combination of events is for-
bidden by procedure. A proper analysis will consider
human error and failure to follow procedure. Errors of
omission (not taking the appropriate action) and errors
of commission (taking an inappropriate action, or per-
forming the appropriate action at the wrong place or
time) and other facets of human reliability analysis
(HRA) are beyond the scope of this paper but must be
mentioned for completeness. Depending on the thor-
oughness of the analysis, one may need to evaluate

procedures, operational documentation, and user inter-
faces for potential human reliability pitfalls.

Common-cause failure

While we often assume that primary (compo-
nent) failures are independent of each other, this is not
always the case. Sometimes a system may fail from
multiple basic failures attributable to a common root
cause. Two examples: 1) components share a common
source of electric power, and 2) a set of components
produced by a given manufacturer contain an endemic
flaw. We generally cannot find common cause failures
just by evaluating the fault tree. We must investigate
minimal cutsets individually. It is helpful to compare
each cutset to a list of common cause categories such
as:

• Manufacturer
• Location
• Regional environmental conditions such as sus-

ceptibility to flood, seismic activity, tornados,
and ice storms

• Local environmental conditions such as temper-
ature, vibration, humidity, dirt, dust, smoke,
fire, and R/F interference

• Human interactions (users and operators)
• Degradation due to test or maintenance activi-

ties

For each component, we list applicable charac-
teristics in each category, then group components
according to similar characteristics. We then identify
each minimal cutset susceptible to common cause fail-
ures in each group of components and judge if it war-
rants further analysis. For example, if the router and
both mail servers were located in the same cabinet in a
data center, they are susceptible to failures stemming
from cabinet wiring faults, physical shock or damage
to the cabinet, loss of cooling, mistaken identity (i.e.,
MTA #1 is mistaken for MTA #2, especially if a cryp-
tic machine naming convention is used or the
machines are physically similar.) Common-cause anal-
ysis is time-consuming and difficult, though [19] pro-
vides a more systematic process for identifying com-
mon-cause failures.

Obtaining Failure Rate Data

One can estimate failure rates by reviewing oper-
ator shift reports, monitoring system logs, using
vendor-supplied MTBF estimates, or using engineer-
ing judgment. It is important to use measured, installa-
tion-specific data whenever practical. Often generic
data and engineering judgment are used until one
obtains enough information to build a local reliability
database.

Note that this sort of data analysis is a fairly
involved topic on its own. Probability distribution
modeling occupies an entire chapter in the Fault Tree
Handbook, and features prominently in [7, 19, 20, and
[9].

2001 LISA XV – December 2-7, 2001 – San Diego, CA 39

A Probabilistic Approach to Estimating Computer System Reliability Apthorpe

Estimating Availability
For the purposes of our example, we will make

some reasonable assumptions about system operation
and use them to estimate component availability.
Assume the mail servers operate continuously except
for a one hour outage every three months to apply ker-
nel patches, a three hour outage every year to upgrade
the mail server software, and 10 minutes of unavail-
ability a month to update configuration files. The
probability of a mail server being unavailable due to
maintenance is

t MTA
maint = 4 [events/yr] ⋅ 60 [min/event]

+ 1 [events/yr] ⋅ 180 [min/event]
+ 12 [events/yr] ⋅ 10 [min/event]

= 540 [min/year]

t MTA
demanded = 60 [min/hr] ⋅ 24 [hr/day] ⋅ 365 [day/yr]

= 525600 [min/yr]

Pmaint(MTA) =
t MTA

maint

t MTA
demanded

=
540

525600
= 1. 03 × 10−3 .

For the router, we assume an annual three hour
outage to upgrade firmware and a quarterly five
minute outage for configuration changes, giving an
‘‘OOS for maintenance’’ probability of

t router
maint = 1 [events/yr] ⋅ 180 [min/event]

+ 4 [events/yr] ⋅ 5 [min/event]

= 200 [min/yr]

t router
demanded = 525600 [min/yr]

Pmaint(router) =
t router

maint

t router
demanded

=
200

525600
= 3. 81 × 10−4 .

Performance Metrics and Observed Failure Data
Estimated failure probabilities are useful for

scoping studies or design-phase analyses but they are
no substitute for observed, site-specific data. Much
work has been done in the field of failure rate estima-
tion; references [19, 20] provide a good introduction
to common data analysis techniques.

Components rarely have a constant failure rate as
shown in the ‘‘OOS for maintenance’’ analysis above.
Failure rate generally varies with time. For physical
components, the plot of failure rate versus time often
takes on a characteristic ‘‘bathtub’’ shape. Three
regions of interest are shown in Figure 12 – Region I
is known as the ‘‘infant-mortality’’ or ‘‘burn-in’’
region, Region II is a region of nearly constant failure
rate, and Region III is the ‘‘wear-out’’ region in which
the failure rate increases as components degrade due
to wear.

I II III

Time

Failure
Rate

Figure 12: Failure rate variation with time (‘‘Bathtub
Curve’’).

When modeling component failure rates, we
must consider the type of component (software, hard-
ware, mechanical, electrical, solid-state), operation
characteristics (used continuously or on-demand),
maintenance frequency, test frequency and severity,3

and operating environment. These factors influence
the choice of probability distribution used to model
the failure rate.

Advanced Models
Calculating the failure rate of repairable systems

can be quite complex, especially systems with redun-
dant backups and multiple operation modes. These sit-
uations lead to state machine models requiring contin-
uous Markov analysis for solution. It is not uncommon
for analysts to conservatively assume systems cannot
be repaired just to simplify the analysis.

Quantifying the Model

A Simplified Model
Let us only consider hardware failures, common

cause failure, and maintenance activity in our model, e.g.,
the probability of all other basic events is zero (alter-
nately, we may treat them as external or ‘‘house’’ events
and set them to false.)4 Then our model reduces to

E1 = or(e5, e7, e8, and(e16, e18), and(e16, e24),
and(e19, e18), and(e19, e24))

where
Event Probability

e5 Router OOS for maintenance 3. 81 × 10−4

Common cause failure of
both MTAse7 1. 00 × 10−5

e8 Router hardware failure 1. 00 × 10−4

e16 MTA1 OOS for maintenance 1. 03 × 10−3

e18 MTA2 OOS for maintenance 1. 03 × 10−3

e19 MTA1 hardware failure 2. 0 × 10−2

e24 MTA2 hardware failure 2. 0 × 10−2

Probabilities of events e7, e8, e19, and e24 are
estimated using engineering judgment. With time, we

3This is especially important for backup diesel generators.
Rapid start times and frequent testing cause substantial
maintenance problems. Ironically, the tests designed to as-
sure availability may tend to reduce it.
4There is a distinction between events which don’t occur

(set to false) and events that occur with zero probability.

40 2001 LISA XV – December 2-7, 2001 – San Diego, CA

Apthorpe A Probabilistic Approach to Estimating Computer System Reliability

would replace probabilities of events e8, e19, and e24
with observed data and perform additional common-
cause analysis to estimate the probability of event e7.

Probability Theory
Quantifying a fault tree is different than quanti-

fying an event tree since the logical combination of
probabilities requires some knowledge of basic set
theory and Boolean algebra. Readers unfamiliar with
these topics are encouraged to review a reference (any
of [2, 19, 20, 21, 5, 6]) for more information.

Before converting a logical model into a proba-
bilistic model, we must understand how to model indi-
vidual logic gates in terms of probability.

The or-gate

The or-gate represents the union of the events
attached to the gate. If events A and B are inputs of an
or-gate and event Q is the output, that is, Q = or(A, B),
then the probability of event Q (i.e., Pr(Q)) is given by

Pr(Q) = Pr(A) + Pr(B) − Pr(A ∩ B)
= Pr(A) + Pr(B) − Pr(A)Pr(B|A)
= Pr(A) + Pr(B) − Pr(B)Pr(A|B)

where Pr(B|A) is the conditional probability of B
occurring, given that A has occurred.

Some important results from probability and set
theory:

• If A and B are mutually exclusive events then
Pr(A ∩ B) = 0 and Pr(Q) = Pr(A) + Pr(B)

• If A and B are independent events then Pr(B|A)
= Pr(B) and Pr(Q) = Pr(A) + Pr(B) − Pr(A)Pr(B)

• If event B is completely dependent on event A
then Pr(B|A) = 1 and Pr(Q) = Pr(B)

• In all cases, one may conservatively estimate
Pr(Q) ≅ Pr(A) + Pr(B) ≥ Pr(A) + Pr(B) −
Pr(A ∩ B). That is, any error introduced by
neglecting Pr(A ∩ B) increases Pr(Q) and is
therefore conservative.

• For small values of Pr(A) and Pr(B), say < 0. 1,
Pr(A ∩ B) is small compared to Pr(A) + Pr(B)
so there is little error in estimating Pr(Q) ≅
Pr(A) + Pr(B), provided A and B are indepen-
dent. This is known as the rare event approxi-
mation.

The exclusive-or-gate

If events A and B are inputs into an exclusive-or-
gate and event Q is the output, that is, Q = xor(A, B),
then Pr(Q) is given by

Pr(Q) = Pr(A) + Pr(B) − 2Pr(A ∩ B)
If we compare the numerical probability results for the
or-gate with those for the exclusive-or-gate, we see that
the difference is negligible if A and B are independent.
In all cases, treating exclusive-or-gates as standard
(inclusive) or-gates is conservative. For this reason,
exclusive-or-gates are rarely seen in fault trees.

The and-gate

The and-gate represents the intersection of the
events attached to the gate. If events A and B are

inputs into an and-gate and event Q is the output, that
is, Q = and(A, B), then Pr(Q) is given by

Pr(Q) = Pr(A)Pr(B|A)
= Pr(B)Pr(A|B)

where Pr(B|A) is the conditional probability of B
occurring, given that A occurred. From probability
theory, we find:

• If A and B are independent events then Pr(B|A) =
Pr(B), Pr(A|B) = Pr(A) and Pr(Q) = Pr(A)Pr(B)

• If A and B are not independent, P(Q) may be
much greater than Pr(A)Pr(B), though no greater
than the larger of Pr(A) or Pr(B).

• If B is completely dependent on event A then
Pr(B|A) = 1 and Pr(Q) = Pr(A)

Quantification

Combining the model and the basic event proba-
bilities, the failure probability of the system is

E1 = or(e5, e7, e8, and(e16, e18), and(e16, e24),
and(e19, e18), and(e19, e24))

Pr(E1) ≅ Pr(e5) + Pr(e7) + Pr(e8)
+ Pr(e16)Pr(e18) + Pr(e16)Pr(e24)
+ Pr(e19)Pr(e18) + Pr(e19)Pr(e24)

≅ 3. 81 × 10−4 + 1. 00 × 10−5 + 1. 00 × 10−4

+ (1. 03 × 10−3 ⋅ 1. 03 × 10−3)

+ (1. 03 × 10−3 ⋅ 2. 00 × 10−2)

+ (2. 00 × 10−2 ⋅ 1. 03 × 10−3)

+ (2. 00 × 10−2 ⋅ 2. 00 × 10−2)

≅ 9. 33 × 10−4

This result assumes all events are independent
and uses the failure probabilities listed at the begin-
ning of this section. A number of simplifying assump-
tions are made, chiefly the rare event approximation.
It is left for the reader to derive the full analytical
expression for Pr(E1) and to compare the true numeri-
cal value to the result approximated here (note that the
full expression for Pr(E1) has over 120 terms.) Here
we see the value of using a computer code to evaluate
and quantify fault trees. While this technique may be
performed manually, the calculations for even a sim-
ple model quickly become tedious.

A final note on quantification: when combining
fault trees and event trees, be sure to combine cutsets
and eliminate non-minimal cutsets for each event tree
end state before quantifying. Fault trees should be as
independent as possible but need not be completely
independent, provided that redundant and impossible
cutsets are removed before generating numerical
results.

Importance Ranking

Now that we have determined the minimal cut-
sets and have quantified the tree, we can quantitatively
assess the importance of each component.

Popular importance measures are Birnbaum and
Fussell-Vessely (named after their inventors), risk

2001 LISA XV – December 2-7, 2001 – San Diego, CA 41

A Probabilistic Approach to Estimating Computer System Reliability Apthorpe

achievement worth (RAW) and risk reduction worth
(RRW.) Birnbaum importance measures the sensitivity
of risk to changes in component reliability over the
entire range of reliability – from ‘‘component always
failed’’ to ‘‘component always available.’’ RAW is the
fractional increase in risk assuming a particular event
always occurs and RRW is the fractional decrease in risk
assuming a particular event never occurs.

Using the notation above, Birnbaum importance
of event ej to top event T is given by

I j
B(T) = Pr(T, Pr(ej) = 1) − Pr(T, Pr(ej) = 0)

We calculate the Birnbaum importance for router
hardware failure e8 as

I 8
B = Pr(E1, Pr(e8) = 1) − Pr(E1, Pr(e8) = 0)

= 1. 000923 − 9. 23 × 10−4

= 1

And for MTA1 maintenance outages, we calcu-
late Birnbaum importance as

I 16
B = Pr(E1, Pr(e16) = 1) − P(E1, Pr(e16) = 0)

= (2. 19 × 10−2 − 9. 12 × 10−4)

= 2. 10 × 10−2

Qualitatively, Birnbaum importance tells us that
risk is much more sensitive to changes in router relia-
bility, less so to changes in mail server reliability. Note
that since router reliability is already fairly high, Birn-
baum importance tells us that system reliability will
fall faster with a decrease in router reliability than
with a decrease in mail server reliability.

The Fussell-Vessely importance of a component
is the sum of the probability of all event sequences
(cutsets) containing that component divided by the
total risk, i.e., the fraction of total risk related to this
component. For the router

I router
GV (E1) =

Pr(e5) + Pr(e8)

Pr(E1)

=
3. 81 × 10−4 + 1. 00 × 10−4

9. 33 × 10−4

= 0. 516
and for MTA1

I MTA1
GV (E1) =

Pr(e7) + Pr(e16e18) + Pr(e16e24)

Pr(E1)

+
Pr(e19e18) + Pr(e19e24)

Pr(E1)

=
1. 00 × 10−5 + 1. 06 × 10−6

9. 33 × 10−4

+
2. 06 × 10−5 + 2. 06 × 10−5

9. 33 × 10−4

+
4. 00 × 10−4

9. 33 × 10−4

= 0. 485

In this case Fussell-Vessely importance shows
router failure contributes slightly more to overall risk

than MTA1 failure. The router’s high reliability makes
up for the lack of a redundant backup router.

Risk achievement worth and risk reduction worth
are calculated for each basic event and a component’s
importance is taken as the maximum of the RAW or
RRW for the basic events associated with a compo-
nent.

RAWi =
Pr(T, Pr(ei) = 1)

Pr(T)

RRWi =
Pr(T)

Pr(T, Pr(ei) = 0)
These metrics are related to Birnbaum and

Fussell-Vessely importance by

I j
B =





RAWj −
1

RRWj





Pr(T)

I j
FV =





1 −
1

RRWj





Based on the values above, we find
RAW5 = 1072. 10

RAW8 = 1072. 41

RAW16 = 23. 51

RAW19 = 23. 08
and

RRW5 = 1. 69

RRW8 = 1. 12

RRW16 = 1. 02

RRW19 = 1. 82

Qualitatively, the RAW results show that a
decrease in router reliability will affect the system
much more than a proportional decrease in MTA1 reli-
ability. The RRW results show that increasing MTA1
hardware reliability is slightly more effective at reduc-
ing risk as a proportional reduction in router unavail-
ability due to maintenance. Both RAW and RRW met-
rics add additional meaning to component reliability
trends.

Compare these metrics to an ad hoc analysis
which could either claim that the router is most impor-
tant because it’s a single point of failure (SPOF) or
that mail servers are most important because of their
much higher failure rate. Note that the ad hoc analysis
breaks down rapidly as the complexity of the system
increases. In this simple case it’s not so apparent but if
we made the system more complex by adding more
mail servers and a standby router, the ad hoc analysis
becomes less useful, approaching mere speculation.
This is especially true when all SPOFs are found and
eliminated.

Regardless of the figure-of-merit used, one must
understand what it represents and calculate it consis-
tently. When using FTA as a risk communication tool,
it helps to use simple, intuitive importance measures.

42 2001 LISA XV – December 2-7, 2001 – San Diego, CA

Apthorpe A Probabilistic Approach to Estimating Computer System Reliability

Expanding The Fault Tree Model

This model is trivial though not totally contrived.
One benefit of explicitly stating our assumptions at the
outset is that we can revisit them individually and sys-
tematically to expand our model. Some issues not
addressed in this simple analysis include:

• human error including errors of omission and
errors of commission

• component dependencies (e.g., if MTA1 fails,
will the increased load on MTA2 increase
MTA2’s failure probability? If we patch
machines less often to reduce maintenance
unavailability, will the probability of software
failure increase?)

• recovery actions
• sensitivity and uncertainty analysis, showing

how the model reacts to statistical variations
and uncertainty in component reliability.

Of these, human reliability is the most important
since human error often dominates risk in high-relia-
bility systems. However, the field of human reliability
analysis (HRA) is extremely complex, far beyond the
scope of this paper.

Comparison between ETA and FTA

Event tree analysis appears simplistic, even obvi-
ous. The technique is important for this very reason –
event trees clearly communicate failure modes (conse-
quences) and the event sequences that lead to them.
ETA provides a straightforward, consistent, systematic
approach to modeling complex systems at a high level.
This high-level approach provides a basis for more
detailed modeling with fault trees.

Fault trees do not model degraded performance
well; since they are built on Boolean operations such
and and or, fault trees are best at yielding binary
results (e.g., success/failure.) Event trees aren’t lim-
ited to binary outcomes and can show a variety of con-
sequences.

Event trees serve another purpose; they are often
used to break up a large analysis into smaller, more
manageable parts, simplifying construction and
review. And unlike fault trees, event trees clearly
show consequences; fault trees are more useful for
showing the existence and probability of failure
sequences. Fault trees are usually far more detailed
than event trees, modeling low-level component fail-
ure and human action. This allows components to be
ranked according to their contribution to overall risk.
Finally, undeveloped events in fault trees explicitly
show the limits of the analysis. Both ETA and FTA
have their strengths and weaknesses but the combina-
tion of the two provides balance and results in a pow-
erful analytical technique.

Limitations of Probabilistic Risk Analysis

PRA requires skilled analysts, a thorough under-
standing of the systems to modeled, observed or

estimated reliability data, and fault tree analysis soft-
ware. For many systems, the cost of analysis is exces-
sive. One is cautioned against putting too much faith
in absolute failure probabilities; the quantitative mea-
sures are most effectively used as relative measures of
risk (i.e., is component X more important than compo-
nent Y, or which sequence of events is most likely?)

Both the aerospace and nuclear industries both
have a very strong configuration management (CM)
culture while formal configuration management is
almost nonexistent in the computer industry. This pre-
sents us with a serious though not insurmountable
challenge – how can we have faith in a model when
the system the model based on is so easily change-
able?

We can categorize system changes as topological
changes and status changes. Topological changes are
changes in which components are added, deleted, or
rearranged; for example, adding a new web server or
moving machines to a new switch or network. These
changes require modifying the structure of a fault tree.
Status changes are changes to the failure probabilities
based on the observed or postulated condition of the
system – these changes only modify event probabili-
ties, they do not affect the model’s structure.

Since computer systems can produce copious
amounts of diagnostic data, I believe one could com-
pensate for status changes by substituting monitoring
for strict CM. Also, by decomposing fault trees into
modules representing generic components and by
mapping network topology [4] and services, we may
be able to compensate for topological changes as well.

Note that monitoring, CM, and PRA are comple-
mentary approaches. CM is costly and never perfect;
monitoring can show where CM is failing and PRA
can show where strict CM is warranted (or wasted.)

Finally, PRA does not handle time-dependent
failure well. Skilled reviewers are required to assure
fault tree completeness. Also, estimating the reliability
of redundant, repairable components can become quite
complex, leading to state machines that require
sophisticated mathematics5 for solution.

Suggestions for Future Work

Analysis software
Most PRA software is archaic or proprietary and

based on my cursory searches, I have found no mod-
ern PRA code that runs under anything but DOS or
some form of Microsoft Windows [8]. To reach a
wider audience of system administrators, we need a
freely-available fault tree analysis code, preferably
released under a license that allows the source code to
be reviewed, modified, and redistributed. The code
should support standard databases (MySql, Oracle,

5Laplace transforms, discrete and continuous Markov anal-
ysis, and other techniques usually forgotten immediately af-
ter passing ones final exams, based on the author’s experi-
ence.

2001 LISA XV – December 2-7, 2001 – San Diego, CA 43

A Probabilistic Approach to Estimating Computer System Reliability Apthorpe

Postgres, etc.) and produce reports and images in com-
mon, portable formats.

Generic Model and Failure Rate Data Repository

Unlike the chemical, nuclear, or aerospace indus-
tries, the computer industry relies almost completely
on commodity components. A repository of generic
fault models and failure rate data would simplify fault
tree construction and quantification. While generic
models and data are no substitute for a careful site-
specific analysis, they would speed learning and
would help analysts build the framework for a site-
specific analysis.

Integrate Monitoring and Management Tools with
FTA Software

Provided PRA analysis software and generic
models and data were readily available, the next step
would be to link common monitoring and manage-
ment software with a site-specific failure rate
database. One could use network analysis tools to
mechanically generate system models or confirm the
accuracy of existing models. Integration with monitor-
ing and management tools would allow near-realtime
risk profiling of systems, similar to refueling outage
risk management software used today in the U. S.
nuclear industry.

Research Topics

While software fault tree analysis (SFTA) is an
active field of research, I know of little system admin-
istration research involving PRA.

Security Analysis and Threat Assessment

One can treat security as a subset of reliability.
Since PRA was originally developed to tackle the
problem of analyzing low-probability high-consequence
events, it seems natural to use the technique for security
analysis. Bruce Schneier uses fault tree analysis6 in
Chapter 21 of ‘‘Secrets and Lies’’ [3], though he stops
short of using fault trees as a probabilistic model. This
may be due a lack of publicly-accessible statistics on
attacks [7] but I suspect he uses fault trees as a source
of data for game-theoretical security models or other
cost-risk-benefit analyses, not as probabilistic models.

Some researchers use fault trees to generate the
requirements specification for an intrusion detection
system [18]. By analyzing protocols and typical imple-
mentations, they found potential vulnerabilities and
developed their software specification accordingly.

Analyze Common Internet Protocols

Security considerations are often neglected when
a protocol is first designed with the intent of adding
security features after the protocol has gained public
acceptance. Many protocols are easily abusable or may
unnecessarily reveal sensitive information to third par-
ties. PRA can be used to analyze common protocols for
potential security, privacy, and abuse vulnerabilities.

6He calls his fault trees ‘‘attack trees.’’ His notation is slight-
ly different than mine but his methodology is similar.

Investigate Common Operating System Process Man-
agement Schemes to Model Process Failure
PRA can be used to analyze common process

management schemes to suggest ways of increasing the
robustness and reliability of existing operating systems.
Once could model permissions, resource requirements,
use, and depletion, etc. to estimate and improve process
reliability. It may also suggest coding standards to help
increase software reliability within particular operating
environments.

Develop a Common Risk Assessment Notation or Lan-
guage
One could add risk assessment notation and tech-

niques to UML (Unified Modeling Language.) New
software would be more secure and more reliable if risk
assessment were considered part of the design process.
UML is often used to describe complex relationships
within and among systems leading to its popularity as a
design and communication tool. It seems natural to
extend UML with risk assessment and management
notation.

Beyond ETA/FTA
Cause-consequence analysis and decision table

analysis may be even better methods for analyzing
computer system reliability than ETA/FTA. Tutorials on
CCA and decision tables are less accessible than those
for ETA/FTA.

Conclusion

PRA is a powerful technique for analyzing and
communicating the reliability of complex systems.
Yi e l d i n g both qualitative and quantitative results, PRA
provides a rational basis for decisions and resource allo-
cation in the face of complexity and uncertainty.

Acknowledgments

I would like to thank Jim Robinson and Kristin
Epley and everyone in Excite@Home’s Product Opera-
tions staff for giving me the time and motivation to
work on this paper. Special thanks go to Loys Bedell,
Wi l l i a m Salyer, Vicki Bier, and Alexei Novikov for
technical review and support. I am forever in the debt
of Marrit Ingman and Susan Pinsonneault for editorial
review. Finally, I’d like to thank Mark Burgess and
Wi l l i a m Annis for their constant motivation and encour-
agement.

Author Information

Bob Apthorpe is a Senior System Administrator in
the Product Operations group of Excite@Home, Inc.
He is primarily responsible for content service design,
support, and reliability but over the past five years has
worked on host and network security, traffic analysis,
monitoring, automation, forensic operations, incident
response, abuse handling, project management, and
documentation.

Prior to joining Excite, he worked as a nuclear
safety analyst with Entergy Operations at River Bend

44 2001 LISA XV – December 2-7, 2001 – San Diego, CA

Apthorpe A Probabilistic Approach to Estimating Computer System Reliability

Station in St. Francisville, Louisiana. He earned an
M.S. and a B.S. in Nuclear Engineering and Engineer-
ing Physics from the University of Wisconsin. In his
copious free time, he performs with the We Could Be
Heroes improvisational comedy troupe in Austin, Texas
and practices just a little aikido. He may be reached at
arclight@jump.net or apthorpe@excitecorp.com.

References

[1] Leveson, Nancy, ‘‘High-Pressure Steam Engines
and Computer Software,’’ Presented as a keynote
address at the International Conference Software
Engineering in Melbourne Australia, http://www.
safeware-eng.com/pubs/HiPreStEn.pdf, 1992.

[2] US Nuclear Regulatory Commission, ‘‘Fault
Tree Handbook NUREG-0492,’’ http://www.nrc.
gov/NRC/NUREGS/SR0492/index.html, 1981.

[3] Schneier, Bruce, Secrets and Lies: Digital Secu-
rity in a Networked World, 2000.

[4] Cheswick, Bill, Hal Burch, and Steve Branigan,
‘‘Mapping and Visualizing the Internet,’’ Pro-
ceedings of the USENIX Annual 2000 Technical
Conference, June 18-23, 2000.

[5] United States Naval Institute, Naval Operations
Analysis, p. 249, 1968.

[6] Gonick, Larry, and Woollcott Smith, The Car-
toon Guide to Statistics, p. 42, 1993.

[7] Moore, David, Geoffrey Voelker, and Stefan
Savage. ‘‘Inferring Internet Denial-of-Service
Activity,’’ To appear in Proceedings of the 2001
USENIX Security Symposium, http://www.caida.
org/outreach/papers/backscatter/, 2001.

[8] Idaho National Engineering and Environmental
Laboratory, ‘‘SAPHIRE – Systems Analysis Pro-
grams for Hands-on Integrated Reliability Evalu-
ations,’’ http://saphire.inel.gov/, May 23, 2001.

[9] Burgess, Mark, Hårek Haugerud, Sigmund Straums-
nes, ‘‘Measuring System Normality I: Scales and
Characteristics,’’ http://www.iu.hio.no/mark/System
Admin/papers/Normal1.pdf, January, 2001.

[10] Burgess, Mark, On the Theory of System Admini-
stration, http://www.iu.hio.no/mark/SystemAdmin/
papers/SysAdmTheory.pdf, March, 2000.

[11] Leveson, N., L. Alfaro, C. Alvarado, M. Brown,
E. B. Hunt, M. Jaffe, S. Joslyn, D. Pinnel, J.
Reese, J. Samarziya, S. Sandys, A. Shaw, Z.
Zabinsky. ‘‘Demonstration of a Safety Analysis
on a Complex System,’’ Presented at the Soft-
ware Engineering Laboratory Workshop,’’
NASA Goddard, http://www.safeware-eng.com/
pubs/DemSafAn.pdf, December, 1997.

[12] Neumann, Peter G., Computer-Related Risks,
1995.

[13] Baker, D. N., J. H. Allen, S. G. Kanekal, and G.
D. Reeves, ‘‘Pager Satellite Failure May Have
Been Related to Disturbed Space Environment,’’
http://www.agu.org/sci_soc/articles/eisbaker.html .

[14] Stevens, W. Richard, TCP/IP Illustrated, Volume
1: The Protocols, 1994.

[15] Partridge, Craig, RFC 974: Mail Routing and the
Domain System, January, 1986.

[16] Postel, Jonathan B., RFC 821: Simple Mail
Transfer Protocol, August, 1992.

[17] Hazel, Philip, Exim: The Mail Transfer Agent,
June, 2001.

[18] Helmer, Guy, Johnny Wong, Mark Slagell, Vas-
ant Honavar, Les Miller, and Robyn Lutz, ‘‘A
Software Fault Tree Approach to Requirements
Analysis of an Intrusion Detection System,’’
Proceedings, Symposium on Requirements Engi-
neering for Information Security, Indianapolis,
IN, http://latte.cs.iastate.edu/ghelmer/SFTA-ID.ps,
March, 2001.

[19] Henley, Ernest J., Hiromitsu Kunamoto, Proba-
bilistic Risk Assessment: Reliability Engineering,
Design and Analysis, 1992.

[20] Billinton, Roy, Ronald N. Allan. Reliability
Evaluation of Engineering Systems: Concepts
and Techniques, Second Edition, 1992.

[21] Grimaldi, Ralph P., Discrete and Combinatorial
Mathematics: An Applied Introduction, June
1989.

2001 LISA XV – December 2-7, 2001 – San Diego, CA 45

46 2001 LISA XV – December 2-7, 2001 – San Diego, CA

