The following paper was originally published in the

Proceedings of LISA-NT:
The 29 Large Installation System Administration of Windows NT Conference

Seattle, Washington, USA, July 16-17, 1999

STATE-DRIVEN SOFTWARE INSTALLATION
FOR WINDOWS NT

Martin Sjolin

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 1999 by The USENIX Association
All Rights Reserved
For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWWhttp://www.usenix.org
Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

State Driven Software Installation for Windows N'T

Martin Sjolin
Warburg Dillon Read (WDR)*
P.O. Bozx, 8098 Ziurich, Switzerland

martin.sjoelin@wdr.com

Abstract

We have implemented a state driven installation
mechanism to simplify the installation of software
under Windows N'T. We have a “central configura-
tion database” which defines the target state of the
machines, e.g. a declarative definition instead of an
operational definition. We describe the procedure
used to install the packages and some related is-
sues concerning software delivery; software configur-
ation; and the actual software installation for work-
stations components and user components. Partial
details of our implementation of System V packaging
is included in the Appendix.

1 Introduction

To make the installation of software in the desktop
computing environment of UBS, we have implemen-
ted a state driven software installation mechanism.
We are using Microsoft NT workstation as the stand-
ard desktop with Netware servers or NT servers as
the associated file and print (f&p) servers or as home
servers for user data. The tools described have been
productive use since the late 1997.

We have selected to “lock” down the desktop and the
machine for the normal users. And having a stand-
ard set of applications which are “packaged” using
our own packaging format similar to the “System
V” packaging [SysV]. This format is used for de-
livery, configuration and installation of the applica-
tions (please see the appendix for more details). The
packages are delivered via CD or SMS [SMS1.2] to
servers on the local LAN in the branch office. Then

*The work described was done while the author was at
UBS AG, Private and Corporate Consumer Division, between
1996 and 1998.

is the software installed on the f&p servers and/or
workstations (clients).

To ensure that all workstations have a standard set
of applications installed, we store the configuration
of each workstation in a “centralized database” !
(this is not an inventory database). The configur-
ation data defines pro workstation which packages
should be installed, the installation mode. and the
installation order between the packages. The users
of the workstation is restricted to the set of packages
listed in the configuration database for the worksta-
tion.

At well defined times, a NT service running on all
NT workstations and NT servers wakes up or is
awakened. The service compares the current state of
the machine (which packages are actually installed)
against the state defined the configuration data. The
service then performs the necessary actions to reach
the state as defined in the configuration data.

When the users login into “their” workstations, we
compare the user components already installed into
the user’s profile (including home drive) against the
set of packages installed on the workstation itself.
We compute the difference between the state of the
workstation and user’s profile, and then perform the
necessary actions to update the user’s profile to the
state of workstation?. We name this fler seating
since the users can flex or change between the dif-
ferent workstations which are similarly configured,
having access to all the standard application via their
profile?.

! The database is stored securely on a server, either as flat
files, ini files, or in a RDBMS.

?In reality, it is more complicated, but the scope of the
paper does not allow us to elaborate on the software author-
ization mechanism.

3To allow full roaming between different branch offices or
different resource domains, we need to add support for on
demand package installation.

For the N'T servers, the same process applies as for
the NT workstations, but with a single extension
- the NT servers must also handle packages which
are exported to the clients, e.g. dictionaries for Mi-
crosoft Office. Compare this against the packages
which are installed for the NT server itself, such as
SNMP, backup, virus scanner etc.

As seen from the above description, we have a de-
clarative definition of what should be installed on
each machine and by extension which application
users have access to. By have the state of the ma-
chine defined in a configuration database, it is very
easy to recreate the state of the machine after a
crash®. Compare this with more “normal” opera-
tional definition where the state of the machine is
defined by the set of application installed on the ma-
chine, possible together stored a central inventory of
the machines.

2 Computing Environment

We support user authentication against a NT do-
main with home directory and profiles stored on a
NT server, or against Novell’s NDS where the user
profile and home directory is stored on a local Net-
ware 4.x server. For the typical environment in a
branch office (the listed server are logical servers,
often there will be a single physical server), we have:

e C(lients, the workstation or desktop machines,
which are all running Microsoft NT 4.0. All
client have an associated shared application
server.

o Shared Application Server which is where
common components like dictionaries, tem-
plates, and seldom used applications are
stored. This is often the print server for the
associated clients. A few standard SMB shares
are available for the client.

e Home Server is where the user home directory
is mapped and stored together with the NT 4
user profile.

e Package Server stores the packages to be in-
stalled. Exports a SMB share with the pack-

4We use the same mechanism for the initial setup of the
machine by providing a small set of bootstrap tools in the
OEM directory of the Microsoft unattended setup, and then
invoking our installation process.

age spool area. For a SMS distribution server
we also have the standard SMS package share.
For NT servers, we distribute package via
SMS and for Netware server we distribute
packages via monthly CDs. Or via HITP or
FTP in emergency cases.

e Configuration Data Server stores the “config-
uration database” as ini style file for the ma-
chines.

3 Implementation

The software installation (including both removal
old versions and additions of new versions of soft-
ware) can logically be split into the installation of:

e F&P servers components is the shared context
of packages. These are made available for the
workstation from its associated f&p server via
SMB shares. For NT servers, the software in-
stallation is done by the “EUP Installer Ser-
vice” (eupsrv).

e Workstation components includes the worksta-
tion context of a package for a shared mode in-
stallation, but can also include the shared con-
text and the workstation context for the local
mode installation. As for the NT server, the
software is installed by the “EUP Installer Ser-
vice” (eupsrv).

e User components are only the user contexts of
a package, installed by by the euplogon pro-
gram at user login time.

We treat the installation of server components and
workstation components as a single case. From the
actual calculations the server case is an extension
of the workstation case to handle the shared context
exported to the clients via the SMB shares.

For the installation of the server and workstation
components, we need the configuration data describ-
ing the wanted or target state of the machine. In
the configuration data for the machines are stored:
the list of packages to be installed, their installation
mode (local, shared, or exported), the location of the
package spool, and control parameters for eupsrv.
The installation order of the packages is the order of
the packages in the configuration data.

3.1 Machine Components

The first step for the eupsrv is to determine if any
users are logged in - we user several methods: a
GINA [GINA], enumeration of open desktops, and a
flag set by the euplogon at user login. If an user is
present, we either present a warning dialog asking
the user to logout as soon as possible, or we will
retry within a pre configured time limit (defaults to
4 hours). Once the eupsrv can detected no users,
it optionally login into the associated shared applic-
ation server using the credentials provided in the
registry configuration. This is to get access to the
configuration data, to the shared application server,
and to the package server.

The initial step is to determine the set of packages
already installed on the machine, state (installed or
removed etc.), mode (local, shared or exported), the
installation order, and who installed them and when.
By scanning the pkginfo directory, for a NT work-
station and a N'T server: YsystemRoot%\Config\PkgInfo\.
And for the N'T server the list of exported packages:
\\server\PkgInfo\.

For each package we read the installed package’s
pkginfo.ini and pkgvars.ini files to retrieve the
installation time, the shared application server, in-
stallation status (successful installed, partially in-
stalled, or removed):

[Status]
PSTAMP=MARTIN980226113655
UserId=SYSTEM
Status=Successfully Installed
Date=1999.11.11:23:05:00

The shared application server associated with each
package 1s retrieved by reading the value from the
pkgvars.ini file. The installation mode is shared
if no shared context have been locally installed. If
a shared context and workstation context have been
locally installed, the package have been locally in-
stalled.

Thus, we have determined the set of current pack-
ages installed on the machine:

CurrentState = set of packages already installed (1)

We connect to the configuration database to retrieve

the target state, which is an ordered list of packages
with their installation mode:

TargetState = set of packages in the configuration (2)

Having CurrentState and TargetState, we compute
the set of package necessary to remove from the ma-
chine, by taking all packages not present in the Tar-
getState but currently found on the machine, Cur-
rentState:

Pkgs2Remove = CurrentState \ TargetState (3)

By default, we filter out package which have not
been installed by the service from the Pkgs2Remove
set, since removing the Emacs package which a de-
veloper have installed for his own use is not accept-

able.

The next step is to compute the set of packages

which we must install on the machine to reach Tar-
getState, which is the set of all package present in

the TargetState but not in the CurrentState:

Pkgs2Install = TargetState \ CurrentState (4)

Notice that two entries when comparing are only
considered equal if the following conditions are met:

1. Same package name (ubsperl 5 un_1.4),

2. Same installation mode (shared, local or ex-
ported),

3. Same shared application server for shared in-
stallation mode, and

4. Already installed package is installed success-
fully.

Once we have computed the Pkgs2install and
Pkgs2Remove sets, we order the Pkgs2Remove in
the reverse installation time to avoid any prob-
lems with install time or run-time dependencies.
The Pkgs2Install set should will the same order
as specified in the configuration data. TIf both
Pkgs2Remove and Pkgs2Install sets are empty we
are finished.

Before we start the actual package addition or
package removal, we verify for all package in the
Pkgs2Install set that the package is actually present
on the package server. We also verify that for shared
mode installation that the correct version of the
shared context of the package is installed on the the
shared application server. If not both of these condi-
tions are fulfilled, we will ignore the package during
the actual installation.

We start traversing the Pkgs2Remove set and re-
move the already installed packages by calling
pkgrm. For the shared mode, we remove the work-
station context (which is the only context installed).
And for the local mode, we first remove the work-
station context followed by the shared context.

The following step is to process the Pkgs2Install
set and to install the new packages by invoking the
pkgadd for each package. The major parameters are:
package name, shared application server, and path
to package spool area. For locally installed pack-
ages, we first install the shared context and then the
workstation context.

The eupsrv invokes pre- and post- scripts stored on
the machine in a secure location and stored on the
shared application server before the enumeration of
the installed package as well as after adding the last
package. This enable packagers or the local super-
visor to modify the state of the machines and have
to influence what are installed.

Last, for a package which requires an immedi-
ate reboot, as specified by the restart flag in the
pkginfo.ini, the eupsrv will force a reboot of the
machine once the package have been removed (or
added). For packages which requires a reboot be-
fore becoming operational, the eupsrv will reboot
after the last action (install or remove) has been
done. The eupsrv will continue operations after
the reboot, either being restarted by the SMS PCM

(Package Command Manager) or by itself.

3.2 User Components

When the user login to a NT workstation, the
euplogon program is invoked - we have replaced the
standard UserInit registry value. The euplogon
program compares the list of packages already in-
stalled on the machine (by scanning the machine’s
pkginfo directory) against the list of user contexts

already installed to the user profile and home drive
(by scanning the pkginfo directory stored on the user
home drive and checking the cached values in the re-

gistry).

Using roughly the same computation as described
in the previous section, the program determine the
set of user contexts to remove and the set of user
contexts to add to ensure that the user have the same
set of packages as already installed on the machine.

One minor change is that we only remove a user
context if the current machine where the user is
logged in to is the same machine where we origin-
ally installed the user context. We avoid removing
a package when an user temporarily login into an-
other workstation than the her normal workstation.
Instead, we hide any shortcut in the user program
menus by setting the HIDDEN bit on the shortcut.

4 SMS Integration

Since one year, we support software distribution via
SMS and also initiate software installation via SMS
for the “pure” NT environment. This integration
caused a number of changes or improvement in the
eupsrv.

4.1 Push versus Poll

When we control software installation using SMS,
we would like to initiate the software installation via
a standard SMS job. This changes the operational
mode from “poll” (check if configuration data have
changes at regular intervals) to “push” (start now
and verify if the state of the machine matches the
state as defined the configuration data).

The standard operational mode of the eupsrv in the
initial release was to poll the configuration data (a
ini file) every fourth hours when a user was not
logged in. To avoid re reading the file when it not
have changed, we cache the last modification date
and size in the eupsrv and compare those attribute
to determine if the file have changed.

We have the PCM installed on all NT workstations,
NT servers, and SMS distribution servers as a ser-
vice. We extended the eupsrv to be started from

the PCM and no longer polling the configuration data
at regular interval. When called from a SMS job,
the eupsrv service is started from the PCM. The com-
mand line executable blocks until the eupsrv service
returns with a status code before it exits (and thus

blocks the PCM and the current SMS job).

The eupsrv was extend with three command line
option to support:

e eupsrv -run which verify the state of the ma-
chine against the state as defined the configur-
ation data. This command is invoked as part
of a SMS job to force an update of a machine.

e eupsrv -pkgadd package-id,...to enable the
installation of one or more package from a
SMS job, if the packages are included in the
configuration data for the machine. The in-
stallation mode is read from the configuration
data.

e cupsrv -pkgrm SMS-ID,... to enable the re-
moval of one or more packages from the tar-
get machine. No check is done for run time
dependencies, so this can break an existing in-
stallation.

Some complication arise in the handling of packages
which requires a reboot or who should restart the
eupsrv after the reboot. The simple solution was
to stop the SMS PCM service when a reboot was re-
quired, and having eupsrv forcing a reboot of the
machine. After the reboot the PCM detects that the
SMS job was not finished, and retries SMS job in-
cluding the eupsrv command.

4.2 SMS Software Delivery

One major problem with SMS 1.2 is that the actual
software distribution is not atomic to the distribu-
tion servers. By atomic delivery, we mean that either
is the package on the SMS share to 100% or to 0%,
not partially present.

To all SMS distribution jobs, we added a small batch
script which created a flag file, in the root of the
package directory once the package was delivered
to the distribution server. The second step was to
extend the eupsrv to verify if the package was fully
delivered to the share by checking for the flag file.

4.3 Shared Contexts Coordination

For packages which are installed in shared mode on
the workstations, we must ensure that the shared
context is present on the associated shared applica-
tion server and also that the correct version of the
package is present. This was added as part of the
SMS extensions to ensure that SMS jobs sent dir-
ectly to the workstations did not try install the work-
station context of the package before the shared con-
text was present on the associated f&p server.

5 The Good, the Bad and the Ugly

We have learned a few lessons during the last years
during the development of the installation mechan-
ism, especially issues which crept up during the in-
tegration with SMS. What follows is a partial lists
of points.

We have discovered bugs in both Microsoft Network-
ing code and the Netware client for NT. The network
and security issues to get the eupsrv working cor-
rectly have been causing headaches.

The “Poll” mode sounds good and looks good, but
the local supervisor needs more control over when an
software installation is started, which workstations
should be done, and a mean to reduce the load on the
network and/or the server. We solved this by adding
a common configuration file on the local Netware
server, but ...

Under Netware 4.x, we need to authenticate against
NDS before we can read files on the server, e.g. the
package or configuration files. In the case of the con-
figuration file above, even though we had limited the
number of parallel updates to, say 5, we overloaded
the NDS authentication server when all the work-
stations tried to read the configuration file. For the
Netware environment, a possible solution would to
use a TCP server for common configuration data, or
start the eupsrv via Netware Workstation Manager.

The current general policy for the installation of a
new version of a package is first to completely re-
move the old version and then install the new ver-
sion. But most of the new versions of packages
are incremental improvement or small changes to
the components. The current approach causes a

lot of extra network traffic by coping data from
the package server which to a large extend was
already present on the target machine. Either
overwrite functionality or a delta package mech-
anism to reduce the network traffic as well as the
installation time should be considered. The cur-
rent “distributed” database of installed components,
pkgstat.dat, in each package’s pkginfo directory
pro context, should be centralized to easy the im-
plementation of overwrite packages.
Centralize the configuration data in a cent-
ral repository (database) and distribute it using
LDAP [LDAP] or similar. By extending the initial
design with new configuration files on the shared
application server, we added more and more con-
figuration data in several location instead of going
for a unified interface. With the new release using
the FUP Values we have initiated the centralization
and collection of the configuration data into a single
location and single interface.

During the last year, we have put a lot of work into
the creation of standard and guidelines for how to
create “clean” packages, package creation tools, and
package verification tools (against a central package
database). This is absolutely essential to improve
the quality of released packages and get a stable
desktop platform.

For the future, with Office 2000 [Office2000] as
well as NT 2000, Microsoft Software Installer [MST,
MSTIT] (MST) is looming on the horizon together with
new release of InstallShield [InstallS] as well as SMS
2.0. We have started working on how we can replace
part of our in-house developed components and in-
tegrate them with MST.

Notice that the ideas expressed with a state driven
installation can be realized using any installation
format as long as the state is saved on the target
system and in the user registry and/or home drive.
There must also exist one-to-one mapping between
a package version and the stored state to enable us
to uniquely determine which version was installed.

6 Acknowledgments

The work described is the work of a lot of people
over the last four to five years at UBS, and an
incomplete list: Andre Aeppli, Martin Hufschmid,

Diedrich Klarmann, Peter Kurz, Nick Riordan, Mar-
tin Schaible, Jeffrey Tolmie. And especially thanks
to those I have forgotten.

References

[SMS1.2] R. Anderson, J. Farhat et al, Microsoft
SMS 1.2 Admanistrator’s Survival Guide, Sams
Publishing, (1997).

[InstallS] InstallShield for Windows Installer:
Overview, White Paper, Version 1.0, Decem-

ber (1998).

[LDAP] T. Howes and M. Smith, LDAP: Pro-
gramming Directory-FEnabled Applications with
Lightweight Directory Access Protocol, Macmil-
lan Technical Pub., (1997).

[MSI] M. Kelly, Gain Control of Application Setup
with the New Windows Installer, Microsoft Sys-
tems Journal Sept (1998) p. 15-27.

[MSIT] Microsoft’s Software Installation Techno-
logy. Part 1: Client-side Installation Seruvice,
Directions on Microsoft (Research), March

(1998).

[Office2000] Microsoft Office 2000 Deployment and
Maintenance, White Paper,
http://www.microsoft.com/office

[SysV] System V Packaging Manual,
http://docs.sun.com

[Win5] Winlnstall version 5.1

[GINA] Winlogon User Interface, Microsoft Win32
Software Development Kit for Microsoft Win-
dows.

A A System V Style Packaging Sys-
tem for Windows NT

The installation mechanism described is build on top
of a packaging system for Windows N'T which have
been implemented in house since the middle 90°s.

The application format is an implementation of a
“System V” [SysV] like packaging system as un-
der Solaris/SunOS, with improvements to enable a

smoother integration with both the Windows NT
and the Netware computing environment. We used
concepts (prototype file, pkgmap file, etc.) from
the System V packaging and also integrated fea-
tures (variables and variable expansion in the output
files) from the WinInstall [Win5, InstallS] product.
We have kept the name of the standard packaging
tools: pkgmk for package creation, pkgadd for pack-
age installation, pkgchk for package verification, and
pkgrm for package removal.

We will try to give an overview of our packaging
system as used in the environment with Windows
NT clients connected to f&p servers. The target is to
describe enough of the packaging system to make the
installation mechanisms clear, without going into the
more esoteric details of the actual implementation.

A.1 Background

Why packaging? Why not simply use Winln-
stall [Win5], InstallShield [InstallS], or the format as
provided by the Microsoft SMS Installer [SMS1.2]7

When the Windows NT 4.0 project started in 90’s,
the existing technology was not good enough, and
did not support both Netware servers as well as NT
servers as target for application installation or parts
thereof. We must support application installation to
both server platforms and we had already a working
packaging system for Netware servers. We also have
experience with the System V packaging tools which
we have extended extensively.

As installation targets, we must support NT work-
stations, NT servers, and Netware servers with a
single packaging format for all platforms. We have
a mixed environment where NT workstations can
have a f&p server which is a N'T server or a Net-
ware server. And for the applications installed on
the workstations, there must be no difference if the
associated f&p server is a N'T server or a Netware
server.

Further, we must also support different languages on
the server (English, German, French and Ttalian);
flexible directory structure (not all application are
installed into C:\Program Files; co-existing of 16-
bit and 32-bit applications; configuration of applic-
ation (e.g. where is the SQL server); and clean re-
moval of applications.

A.2 Shared, Workstation and User Con-
texts

We generally talk about three different parts of a
package: the shared context, the workstation con-
text, and the user context. Before we go into details
about the different contexts, we need to mention that
a package can be installed in three modes:

Local mode is when everything in the package is
installed on the target machine.

Shared mode is when part of the package is in-
stalled on the f&p server associated with a
workstation. The typically installed compon-
ents are dictionaries, help files, clip arts, or
shared database files. In this case a set of
workstations “share” the common items on the
server.

Exported mode is only valid for a N'T server (a
shared application server) where a package is
“exported” to a set of a workstations. The
shared context of the package is installed on
the server, but read/referenced by the clients.

It is important to notice that the package itself can
be created (and should) in such a way to support
both local and shared installation modes. Often the
installation mode is selected at installation time and
not at package creation time.

The shared context of a package are those files which
are part of the shared installation. This can only
be files and no registry entries, since the files are
made available to the client via a SMB share® on
the associated f&p server.

The workstation context of a package are file com-
ponents and registry components which are in-
stalled on the client itself. The registry changes
are made to the machine hive (HKLMS®), of-
ten adding configuration information for the ap-
plication or adding definitions for a DLIL. The
files are typically installed on the machine either
in the Y%SystemRoot%, %System32), or under
%SystemDrivey, directory. Typically a shared DLL
(mfc42.d11) goes into %System32% and netscape.exe
into %SystemDrive%\ie appl\ie 4\netscape

5Typically ie_appl
8Hive Key Local Machine

The user context of a package contains the registry
changes to the user hive (HKCU?), possible config-
uration files into the user home drive, or changes
to the user profile. An typical example is to add a
shortcut to the program menu, pointing to the ap-
plication installed in the workstation context of the
same package.

A.3 Packaging Classes

As under System V packaging, we provides a set of
standard classes to perform the usual manipulations
needed to install an application. All but one class
is external, that is implemented as an executable
outside of pkgadd:

none used for directory creation, file copying
and also to copy the install.txt and the
pkginfo.ini into pkginfo directory (intern-

ally implemented class).

registry class to do changes to the registry
(REG_SZ, REG_DWORD, REG MULTI_SZ etc.).

iniclass for changes to .ini files.

execbat to invoke CMD script during package add
or package removal.

pkgenv to change the machine or user environ-
ment.

pkgpath to add or remove components to the ma-
chine (system) path or user path.

shortcut to create shortcut to an executable in the
user’s start menu or in the default/all menu
for the machine.

pkgassoc to add an association between a file type
(.htm) and an executable (netscape.exe).

pkghosts to add an hostname entry to etc\hosts

pkgserv to add a service definition to the

etc\service
regocx to register a “self registration” DLL.

resolve to replace packaging variables in the input
file with variable values (variable expansion).

"Hive Key Current User

In System V packaging, we have the concept of
classes which are used to determine which part of
a package is going to be installed. We do not have
classes to do dynamical installation configuration,
instead it is possible to place conditionals in the
prototyp.txt as for the C pre processor (#if...
#else... #endif). The conditional allow the pack-
age creator to query different package variables to
determine which files to install. A typically ex-
amples is to install the correct sound card drivers

dependent on the type of the machine.

A.4 Packaging Variables

In System V packaging, the pkginfo file is used to-
gether with the request script to gather the input
necessary for the correct installation of the pack-
age. The environment created by the output from
the request script can then be used during the
preinstall and postinstall scripts.

In our implementation, we do not support interact-
ive prompting (4 la request script) for the install
time configuration. All information must either be
present on the machine at installation time, it must
be possible retrieve from a configuration file, or it is
possible to compute the configuration information.

We have the pkginfo.ini file. The following is an
example from the standard UBS Perl package:

[PKGINFO]
PackageName=UBSPerl
PackageVersion=1.4
Description=Perl-Win32
ProgramName=perl
ProgramVersion=5
ProgramVendor=GNU
VendorVersion=5.004p2
ProgramLanguage=UN
PackageCategory=1
PackageType=0
PackageArchitecture=W32
InstallType=FULL
TargetArchitecture=LAN,STD
DiskSpace=6729603
DiskUser=0

DiskShared=0
DiskWorkstation=6729603
Restart=No

[R-Dependencies]
RT_MFC>=4 ,UN

[I-Dependencies]
RT_SYSTEM=4,IE

[Status]
PSTAMP=MARTIN970814135523

The variables listed in the section 'PKGINFQ’ are
available during the whole packaging installation

process. Further, for each machine, we have a
packaging variable configuration file, pkgvars.cfg,
which contains the standard mapping between the

defined official variable names and the locations,
This file also define the standard menu name an
structure, the standard protection code for shared,

workstation and user files. As an example for a Net-
ware server with international English release:

System32 = "YSystemRoot¥\system32"

UserRoot = "/UserDrive%"

PackageData = "YUserRoot%\’PackageName"
AllUsers = "YSystemRoot¥\Profiles\All Users"
UserDrive = "H:"

PackageDir = "%ApplRoot¥%\%PackageID}"
UserMenu = "YUserProfile%}\Start Menu"
StartupMenu = "YProgramMenu%\Startup"
ReleaseDir = "IE_APPL"

ProgramMenu = "}UserMenu\Programs"
DeveloperMenu = "YProgramMenu\Development Tools"
DocumentsMenu = "YDeveloperMenu’\Documents"
OfficeMenu = "4ProgramMenu’\0Office Applications"
PersonalMenu = "YProgramMenu\Personal"
ApplDrive = "I

ApplRoot = "\\%server%\SYS2\/ReleaseDir¥"

By having different configuration files for N'T servers
and Netware servers, we hide the differences in the
directory structure. We also define in the guidelines
which variables can be used and in which context,
e.g. in the shared context your are not allowed to
install a DLL into %System32% directory. You can
only install a DLL into this directory in workstation
context.

The variables can be used in the prototyp.txt and
in all the files which are input to the external classes.
By using variables in the file input to registry
class, we will have the correct path to the execut-

able:

REGELCIT4

[HKEY_LCCAL _MACHINE\SCFTWARE\\Fer1”
'FFRLELIE' =' YSysrtemDrive#/\\UEE_Tccls\\YFrogramName#%\\1ik;

[HKEY_LCCAL_MACHINE\SCFTWARE\Classes\.pl”
€='Ferl'

[HKEY_LCCAL_MACHINE\SCFTWARE\Classes\Ferl\Shell\Cpen\CommandZ
€='perl.exe %1 %*'

So far, the packaging variables described only have
allowed configuration based on the static settings
stored on the target machines, using the configura-
tion files and the installation target. We have exten-
ded the packaging system to allow installation time
querying of variables values, so called FUP Values.
The actual value of the variable can be a single string
value or multiple values. All variables which begin
with a standard prefix are queried at installation
time by pkgadd via an well defined interface expor-
ted by a DLL8.

8By exchanging DLLs, we can have different data sources

A.5 pkgmk

As under System V, the main input to the pkgmk
is the prototyp.txt file which describes the com-
ponents as well as into which context the different
components are to be installed:

[Shared]
d none "YPackageDir%" ? 7 7

[Workstation]
'search ".\install"
e execbat "preTask.cmd"™ 7 7 7
'search ".\system32"
e registry "wks.reg" 7 7 7
f none "%System32%\nsrt2432.acm" RO ? ?
c #if YEUP_MachineType%=SERVER
f none "%System32%\rt32cmp.dl1" ¥%WksFileAttr¥ PD ?
C #else
f none "YSystem32%\rt32dcmp.dll" %WksFileAttr% P ?
c #endif
execbat "postTask.cmd" 7 7 7

(0]

[User]

'search ".\install"

e registry "user.reg" 7 7 D

e shortcut "shortcut.sct" ? 7 7

The pkgmk generates a spooled package in a spool
area with a standard directory layout. Included is
the file pkgmap.dat describing the contents of the
package which corresponds to the System V pkgmap.

A.6 pkgadd

For the installation of a package, or rather a context
of package, we use pkgadd, specify the full pack-
age name, the package spool area, the target ma-
chine, and the selected context. Before we install the
workstation context we must have a shared context
installed, either locally on workstation or the asso-
ciated the f&p server. This also applies for the user
context, which cannot be installed until the work-
station context have been installed.

Under System V packaging, we have the preinstall
and postinstall standard scripts which we can use
to prepare and/or for the cleanup of the package
installation. This will have to be implemented via
BATCH scripts located in the prototyp.txt in the
first or last position within in each contexts. For
example, see the postTask.cmd and preTask.cmd
in the example prototyp.txt.

Under System V, the installation of a package mod-
ifies the /var/sadm/install/contents to add the

and transport mechanisms.

newly installed components and their protections to-
gether with the owner of the components. Also, a
reference count of the packages which have installed
the same components are kept in the contents file.

Instead of having a central database (the contents
file), we selected to have a distributed state pro
package and pro context in the local file system
on the target machine and in the user home drive/
Notice that the
same format and contents 1s used for all contexts and
all targets. When the package is installed, pkgadd
creates a “package information” (pkginfo) directory
in the proper location on the target (machine and
context) using the package name provided as argu-
ment to pkgadd. For a shared installed package, we
will have a pkginfo directory for the shared context
on the server; a pkginfo directory for the worksta-
tion context on the NT workstation; and a pkginfo
directory in the user home drive and registry. Typic-
ally, the different locations for the example package
ubsperl 5 un_1.4:

registry (part of the user profile).

® \\zhsv13664\PkgInfo\ubsperl5_un_1.4\ for the
shared context installation on a NT server.

® \\zhbdvf02\Sys2\PkgInfo\ubsperl 5un_1.4\ for the
shared context installation on a Netware

server.

® YSystemRoot%\Config\PkgInfo\ubsperl5_un_1.4\Shared\
for the shared context installed on a worksta-
tion (local install).

® YSystemRoot%\Config\PkgInfo\ubsperl5 un_1.4\ for
the workstation context®.

® YHOMEDRIVEY\Sys32\PkgInfo\ubsperl 5_un_1.4\ for user
context of the package!®.

In the pkginfo directory, we have the pkginfo.ini
file, which is the same as provided in the package
spool, except the information about the installation
have been appended (when was the installation done,
status, and who did the installation).

Further, we find the pkgvars.ini file, which con-
tains the actual packaging variables, and their val-
ues, used for the installation of the package. We also

9The location is stored in the registry on the machine and
set when the machine configured. No hard coded paths are
stored in tools themselves

10The exact path is stored in user registry and is initialized
the first time pkgadd is called.

have the pkgstat.dat file which contains the list of
components installed in actual installation order.

All files which are used as input to any of the classes
are also kept (e.g. input to registry class, path class
etc.). Notice that the input files in the original pack-
age 1s processed and all the package variables are
replaced with their values before the files are feed to
the classes. By keeping the input file to the classes,
we will not need the package spool during the pack-
age removal. Second, we ensure that the same values
for the packaging variables are used for the package
removal as were used for package installation.

A.7 pkgrm

For the removal of a package, we have pkgrm and
all the necessary information for removal is present
on the machine in the pkginfo directory. The pack-
age contexts for a single package should be removed
in the reverse installation order, e.g. for a local in-
stallation the workstation context should be removed
Notice that we should
not remove the shared context installed on a server

before the shared context.

until all associated workstation have removed their
workstation context. User contexts, being the last
installed context for a package, can be removed at
any time.

The preremove and postremove supported by Sys-
tem V have to be replaced with the PreTask.cmd
etc. Notice that the installed components within the
installed package are removed in reverse installation
order using the pkgmap.dat file stored in the pkginfo
directory.

