The following paper was originally published in the
Proceedings of LISA-NT:
The 29 Large Installation System Administration of Windows NT Conference

Seattle, Washington, USA, July 16-17, 1999

DEPLOYMENT OF MICROSOFT WINDOWS NT
IN A DESIGN ENGINEERING ENVIRONMENT

Jason Sampson, Elwood Coslett, Gary Washington,
Bob Paauwe, Russ Craft, and Kevin Wheeler

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 1999 by The USENIX Association
All Rights Reserved
For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510 548 5738
Email: office@usenix.org WWWhttp://www.usenix.org
Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial

reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.

USENIX acknowledges all trademarks herein.

Deployment of Microsoft Windows NT
In a Design Engineering Environment.

Jason Sampson, Elwood Coslett, Gary Washington,
Bob Paauwe, Russ Craft, Kevin Wheeler

Intel Corporation

Abstract

This paper details some of the experiences and issues
Intel Corporation encountered when developing and
deploying a Microsoft Windows NT 4.0* based
environment for use in by our chip designers. We are
deploying Intel* based Windows NT workstations to
engineers designing Intel’s next generation products.

We offer our experiences in hope that other groups
using NT in a design engineering environment can
benefit. Along the way we explain how we solved the
problems associated with a tightly controlled design
engineering workstation and environment presented us.

1. Introduction

In 1995-1996, Intel Corporation began to deploy
Windows NT to design engineering groups at our sites
in Folsom, CA, Hillsboro, OR and Haifa, Israel.

All of our design engineering sites have local
administrative groups that support the local Design
Engineering departments. The groups typically assist
with normal day to day operations and maintenance of
the environment while working with the Design groups
to plan and develop engineering environments to meet
their future needs.

The number of design engineers varies from site to site.

Design engineering customers total about 5000-6000
individuals world wide, all of which run UNIX and/or
NT. The need for a well-planned and functionally
complete heterogeneous environment is imperative to
the success of each project. The total number NT
design engineering workstation number in the 1000-
2000 systems worldwide.

2. Workstation Models

Our deployment of NT followed a progression from an
PC running as an “Xterm” all the way up to a full-

fledged engineering workstation that has full access to
both NT and UNIX environments, either natively or
through emulation.

2.1 Xterm Model

Our initial effort was to deploy Intel based NT
workstations to the engineer’s desk. The engineer
could access our UNIX environment through an X
Windows emulation product. The NT workstations
effectively became a powerful X-Term.

By deploying Windows NT, our engineers had the
convenience of having all of the productivity tools
available on Windows NT (Word*, Excel*, Outlook*,
etc) as well as complete access to the UNIX tools
needed to design our products. This allowed us to
reduce costs by providing a single desktop to meet all
of our engineer’s needs. It also offers us the ability to
move on to an environment where some or most of the
design engineer’s tasks are done locally to the
workstation.

2.2 Standard Infrastructure Release

When our design sites started with NT, they
individually developed their own build. This presented
problems when projects had to share data and scripts
between sites using different builds. A significant
amount of work would be necessary to port scripts to
another NT environment.

To rectify this problem, we pulled together the best
features of the existing NT 4.0 environments and built a
standard build, called the Standard Infrastructure
Release, for deployment at all of our engineering sites.
This standardization not only helps with portability, but
also allows us to share the expense of maintaining the
environment across multiple sites. This becomes
particularly important when we consider our application
integration process.

2.3 Work Model

In our design engineering UNIX environments, the
design engineers never have administrative (root) rights
on their workstation. In addition, applications and data
are not permanently stored on the workstation. The
UNIX workstations are considered application-less and
data-less. This offers the ability to replace systems
quickly and have the user back up and running in short
time. Should a system fail, there is no reason to worry
about re-installing applications, re-enabling daemons,
etc. because all workstations have exactly the same
build and features enabled. Very rarely is one machine
significantly different than another.

In our UNIX based design environments we have
developed, and continue to develop, an environment
that allows any engineer to run any tool on any
workstation anywhere within the company. This “any-
any-any” concept is a guiding principle that is also
applied to our NT workstations. Paths to applications
and tools are consistent across all sites. In addition, the
exact same version of each tool or application is usually
available at every site.

When developing our NT environments, we worked to
apply these same principles. Our NT workstations are
application-less and data-less. Also, the exact same
version of each tool is available at every site and it is
found in same location.

Like with our UNIX workstations, we are able to swap
out replacement of defective systems without worry of
data loss. The engineers are able to be back to work
quickly without having to wait many hours to install all
of his or her required applications.

The application-less workstation thus requires that most
applications run from a file server. While this is
common place in UNIX, it is less commonly found
within NT environments. This has forced us to create
tools and processes to re-engineer application
installations to allow them to run from the network.
However, we’ve also found that some applications just
refuse to run from a network location. They usually
want to write temp files to the directory they are
installed in, instead of using %TEMP%. In that case,
we are forced to install the application locally and open
the ACLs to allow the application to run.

Since many CAD tools are very large, and the number
of tools used by the engineers is extensive, their time is
saved re-installing these tools by minimizing the
installation process to include only the required local
changes like DLLs, registry and profile changes. The

bulk of the application is place on the network file
server.

In an attempt to apply these effective practices
employed to manage our UNIX environments, our NT
workstations also have restricted file system
permissions. Users generally are not granted
administrative rights and can not install just any
software package they desire. This places the burden
of software installation on the administrative group.

In addition to preventing application installation by the
user, we prohibit the permanent storage of data on
workstations, thus workstations are not backed up.
Personalized components of the application are stored
on a personal drive instead of the profile. The data
stored on the personal drive, which is a drive located on
a network file server, could easily be 50 to I00MB in
size. Should we store this in the user’s profile, login
times would be greatly increased.

Locking down the workstation and preventing users
from installing their own application generally
increases stability of the workstation. Workstation blue
screens and application crashes are reduced.

Another driver for locking down the workstation is our
requirement to run batch jobs. To be successful, a
batch environment requires a highly reliable and
consistent environment. Locking down the workstation
and providing consistent tools and tool locations make
for a reliable environment.

3. Building the OS Image

Our workstation builds utilize Microsoft’s OEM
installation process. Using this process, and a few
custom scripts, we are able to create an image that is
consistent. Any two systems using the same build
should not have different components installed, and
they are never installed in a different order.

3.1 Partitioning

Our workstations are split into three partitions, C: D:
and E:. C: is for OS, system administration tools and
the swap file. D: is for any local applications and E: is
a user scratch area. By breaking the system into
multiple partitions, we’re able to reserve space on the
system for specific functions. Since the applications
are always installed on the D: drive, we can be assured
that the C: drive will never fill up because only OS and
system administration tools are found on that drive.
Same goes for the E: drive, since the user has almost
free reign on that drive, we do not have to worry about

an application failing to install because the user has
filled the application drive with temporary data.

With each install, the person building the system
answers a few questions on the build diskette, including
whether to FDISK the system, and then the install
process takes over from there.

Partitioning is handled using freeware tools to wipe the
partition table and scripted FDISK commands to create
the C:, D: and E: partitions. Internally developed
command line tools extend the D: and E: partitions
beyond the 2GB limit presented by our DOS based
build disk.

3.2 Disk Cloning and the OEM Build
Process

The OEM build process is an effective means of
creating consistent and fairly easy to maintain and
extend build images but there are a few limitations.

One of the most serious limitations is that the OEM
build process is time consuming; building a system
from a boot disk can take a forty-five minutes to a hour
depending on network speeds, size and number of
applications installed. Our standard build installs the
OS, Service Packs, Hotfixes and the productivity
applications needed on every system.

To reduce the time taken to build a system, at some
sites we’ve utilized disk cloning to build our systems.
The original image is still built using the OEM build
process, from which the clone is generated. The result
is a workstation image than can be installed in about
10-15 minutes instead of a closer to one hour.

A disadvantage of disk cloning is that it requires a re-
creation of the cloned images if you need to change
something as simple as a device driver file. We have
standardized on only a few workstation models to
support, thus the number of images needed is very
small. Also the time between releases of our OS image
is relatively long, thus we do not have to recreate the
cloned images several times. It is our opinion that the
time benefits saved installing the cloned image
outweighs the cost of creating and recreating the initial
clone image.

3.3 ACLs

Once we established a process to install the OS, we
extended it to customize the build Microsoft provides.
First we used the Zero Admin Kit for Windows* to
build our initial ACL settings. This kit, freely available

from Microsoft, provides a script to set the ACLs on the
local file system to remove Everyone:Read from the file
system ACLs and to set them to Users:Read-Only for
the C: partition. We applied the same ACL set to the D:
partitions, where applications are installed.

Another tweak we made is to %Systemroot%\system32,
which has the directory permissions set to Users:Add &
Read, Creator-Owner:Full Control. The files provided
at build time are set to Users:Read-only. With this
setting, users could add new files to the directory, but
couldn’t change any of the files that were there at build
time. The intent of this setting was to allow “good”
programs to install to the system, letting them add files
to the system32 partition, but not change anything that
was already there. This proved in the end to be a very
minor impact.

These ACL settings provided the greatest level of
controversy with our customers. Many of our
customers who were familiar with Microsoft Windows,
Windows 95/98 and NT were accustomed to having full
administrative rights or the ability in general to install
any application they wished. To them, their NT system
was their personal computer to do with as they pleased.
Our wish was to treat these machines like tightly
controlled UNIX workstations, not personal computers.
This mindset change was difficult for some to get over,
but once they realized their environment was more
stable, they began to accept the locked down system.

When these same users began to use our locked down
build, they quickly found that most applications could
not install on the system. The installation programs
would either complain about the inability to copy a
DLL, or simply fail with an error message. They
would even complain if the version of the file there
were copying was exactly the same as what was on the
system. The installation required copying the file no
matter what. Some good applications would allow you
to skip those types of errors and continue with the
install, but unfortunately those were very far and few
between.

Since the users were not able to install their own
applications, it placed the entire burden of application
installation on the heads of the administrative support
team. We needed a means to install the application on
the workstation remotely and consistently.

4. Software Distribution and Installation

The application-less workstation requires that we install
as many tools as possible to run from a file server. The
file server location also had to be read-only to all users.

We did not want users writing to temp files, etc to the
application server.

These requirements resulted in an application
installation process that is summarized to updating the
local and user’s registry, creating short cuts to the
network location, and copying DLLs to the system32
directory.

Most of the applications we use do not provide an
option of installing and running the application from a
network file server. This means in order to make our
locked down, application-less workstation model work,
we were going to have to re-create the vendor
installation that would allow the application to run from
the network.

Since we also intended to run batch jobs on our NT
workstations at any time of the day, we wanted to
minimize job loss by minimizing the number of reboots
of a system. Many vendor installs seem to require
reboot of the system simply to start a service or perform
some other simple function. However, most of the time
a reboot was only necessary to update a locked DLL.

We further complicated the problem by requiring that
no DLL could ever be downgraded by an application
installation. Our experience has been that DLLs
generally are backward compatible with an older
version. A tool should run, with a high level of
certainty, when a newer version of a DLL it depends on
is found on the system. Microsoft has published
guidelines and made tools available for ISVs to use to
perform DLL version checking, but unfortunately, not
all applications can go through these checks. Since it
is sometimes difficult to tell if the vendor has been able
to go through the DLL version checking, we were
forced to implement our own DLL versioning system.

4.1 DLL Management

Combining the problem of a lack of network installs for
applications with the questionable lack of DLL
management in vendor installs, we were forced into
creating our installation process and tools.

These internally developed tools perform most of the
functions needed to install an application. Where they
do not, we rely on NT 4.0 Resource Kit* tools like, SC,
to handle specialized tasks.

Our tools also allow the administrator to create an
application installation script that would allow the tool
to run from a local drive or network location with a few
simple variable changes. Every application installation

script we make, called a module, is variable-ized. All
path locations and site-specific settings are replaced
with a variable, and then at installation time, those
variables are resolved to values. The result is that one
site can create a module specific to their site, and send
it to another site, and with just a few changes in a text
file, the module should be able to run at the new site.

Perhaps most importantly, our tools nearly give us
complete control over what happens to the DLLs on the
system. When we started, we used a PERL script to
manage our DLLs on the system. When a new
application image was created, the DLLs that
application installed were checked against a central
location. The versions were compared using FILEVER
from the NT 4.0 Resource Kit. If the application
wanted to install a newer version of the DLL, we would
update the central location with that version. A table
was kept to track all of the file versions of the DLLs
found in the central location.

When an application installed, all of the DLLS
provided by the original installation program are copied
to the system. Then the PERL script would check
whatever was currently on the system against the
central location. If the local version were older, we
would update the local version with what was found in
the central location. If they were the same version, the
file was not updated.

When this process was followed, we were able to test
multiple applications against the same set of DLLs to
validate functionality. However, due to time spans
between releases, and the requirement to have site
specific tools, the central directory quickly became out-
dated.

To improve the DLL management process and to
remove dependency on the central location, we built
into our installation tool the same logic our PERL script
had, excepting that we used native Win32 calls to get
the file version. This greatly improved installation time
by preventing unnecessary file copies and the execution
of'a PERL script. It removed the dependency on the
central location by preventing the downgrade of the
DLL in the first place.

What we found in using this process is that we were
nearly able to remove any concern about DLL loading
order because the newest version of the DLL should be
found on the system. However, what we also found is
that locked DLLs are more troublesome than originally
thought.

When our installation tool encounters a locked DLL,
we use a slightly different process than most vendor

installs use. Most vendor installs set the system up to
replace the locked DLL with the newer version at
reboot. This forces the user to reboot the system once
the application install is completed. The newly
installed application cannot use the new DLL until the
system reboots, even if the locked DLL becomes
unlocked before reboot. Our process renames the
locked DLL (e.g. ren msvert.dll msvert.dll.old23452) ,
copies in the new DLL (e.g. copy msvert.dll
%Systemroot%\system32), and then use the Win32 API
call to delete the locked file at the next reboot. This
process allows an application to immediately use the
new version of the DLL, should the locked version be
released. Thus a reboot is not necessary.

However, DLLs locked by the OS are not released until
reboot. This ended up being somewhat problematic.

When querying the file version table of a locked DLL,
one that is in use by the OS or other application, we
found that the FILEVER tool and the Win32 API calls
always return the version of the file loaded into
memory. Thus, even if the file has been replaced using
our DLL update process, the version that is loaded into
memory will be returned. The only way to combat this
problem is to require the user to reboot the system
before installing additional tools or to rename the
locked DLL, check the version, and then rename it
back. This of course happens fairly frequently and has
made utilization of NT in a batch environment more
difficult, since a rebooted system means lost batch jobs.

4.2 Application Installation and
Differencing Technology

Our application installation requirements, the ability to
run from the network or locally, DLL management, and
minimization of reboots, has required us to develop our
own tools for software distribution and installation.

As a basis for installs, we are using a process that uses a
differencing tool to create a before and after snapshot of
the system and then create a new installation script that
meets our application requirements.

First we build a bare bones system that includes only
the OS, service pack and hotfixes. This is done from an
option on our build disk that prevents any of the
standard applications from being installed. In effect,
we have installed NT using the three boot disks and
CD, and running the service pack and hotfix installs
manually.

Next we use the differencing tool to take a pre-
installation snapshot. The application is installed using

the vendor installation program. If we are trying to
create a network install, we install it to a simulated
network drive. Using SUBST or a local share, we map
a pseudo-application drive to X:, our drive letter for our
applications. Then the application may also be
configured with a customized set of default options.
Finally, the differencing tool captures a post-installation
snapshot and generates a listing of changes to the
workstation that make up that instance of the
application installation. We use the results of the
differencing tool to generate our installation scripts
using our internal tools.

The differencing technology has some distinctive
advantages:

¢ Administrators know exactly what changes are
made to the local DLLs, registry and the user’s
profile. A source of a problem can be tracked
down by searching through all of the registry
changes, which are kept in plaintext
REGEDIT format. A more comprehensive
workstation audit is also possible because we
know what is supposed to be on the system
and where to go to address deficiencies.
Without a complete understanding of what
files and registry keys are used by an
application, problem determination is
hampered.

e Conlflicts between applications can be
identified in advance. Some applications will
set registry values to one value, another will
want it with another value.

¢ Removes user interaction from install;
installations are consistent. We can create an
install that looks exactly the same as every
other install.

One problem we’ve encountered when using this
differencing technology is that the output of the tool
may be only one possible installation scenario. The
differencing tool is not able to identify and replicate the
logic built into the install that may be triggered when a
particular file or registry entry is present. Thus, the
differencing technology is prone to bugs. We’ve
attempted to minimize this problem by trying to guess
what the vendor install may do in particular situations,
or patch the install when we’ve encountered a problem
with the original install.

In addition, many times registry keys are identified as
being changed during the install that either are side
effects of the original install or part of normal NT
operation, like the Most Recently Used lists or last
shutdown time key. Identification of these types of
keys is not easy for the new administrator.

The administrator must learn through practice,
extensive training and a little bit of art to determine
which keys in a registry file are applied and which ones
are removed. This learning curve further complicates
the application integration process.

Invariably, the resulting application image has bugs or
introduces problems through inconsistent application of
standards. Many of these issues have been addressed
through scripts we’ve developed to tackle the usual
situations an application integrator may encounter,
however, intimate knowledge of NT application
installation and some good detective work are
necessary to provide a high quality application
installation.

Clearly the amount of effort needed to integrate an
application is very high. In addition, because we force
applications to run from locations where they were not
tested or intended to run from, and because we are not
using the vendor installation method, getting support
from a vendor on application issues may be difficult or
impossible.

4.3 Split Installs

With most application images, we create two
installation scripts. One to apply the system registry
and local file system changes, and another script to
apply the user profile and personal drive changes. This
split, without automation, can also be an intensive,
error-prone task.

The system changes are performed by a service running
in a local administrative context. Thus any DLLs or
registry entries that require administrative rights to
update can be handled by this service. The user does
not need to have administrative rights to install the
product.

The user changes are applied in user context. In our
environment the LocalSystem account rarely has rights
to access the user’s personal drive, so it is necessary to
install the user portion of an application by running as
that user.

This split of the system and user portions of the
application installation also allow us the luxury of being
able to “push” the system portion, usually the most
resource intensive aspect of an installation, to many
systems in the off hours of the day. We are then able to
schedule the installation to reduce impact on our file
servers and networks. The engineers then simply have
to run the user portion of the installation to complete

the installation, which is usually very quick and less
resource intensive.

We also have the ability to force the installation of the
user portion of the application for all logged on users
through a user process that is started from the All Users
startup group. This user process checks the local
system registry for jobs and will execute it.

Our tool suite also offers a pull mechanism. The user
can open a GUI program select the application(s) he or
she wishes to install and click one button to initiate the
install. Depending on the size and location of the
application, it will install in just a few minutes, up to a
half-hour. Our underlying installation tool works with
the GUI to let the user know whether to logoff and log
back in, or to reboot the system. If no user action is
necessary, the user should be able to immediately open
the application and begin using the tool.

5.0 Conclusion

Recently we’ve taken a hard look at our processes and
attempted to re-evaluate their effectiveness or
worthiness. We’ve known all along that our application
integration process, including the support for the
internally developed tools, was an expensive cost to
burden. We felt that the benefits achieved from the
policies and processes we implemented outweighed the
costs associated with support of the tools and processes
we implemented.

Now with the introduction of Microsoft Windows
Installer* technology based installation tools, and more
ISVs using installation products that allow us to record
installation options, many of our higher priority
concerns have been addressed. We can now script our
application installations, gather a fair amount of
information about what changes on the system, and feel
comfortable with the DLL management processes. It
appears that the industry has made significant strides in
addressing many of the issues that had no resolution
when we began this process two to three years ago.

With these advances we’re close to being able to retire
our internally developed tools and rely more on third
party solutions for most of our system administration
needs.

However, that is not to say that there isn’t anything left
to fix. A short list of items we would have liked to
have seen to make our implementation of NT more
successful include:

¢ More command line tools, which means the ability
to script administrative functions. We’ve had the
luxury have having excellent resources internally
who can write command line tools, but there are far
more important items we should have to worry
about.

¢ We need to minimize reboots. Applications have
to be able to use the new version of a DLL without
having to reboot.

e The option to install applications locally or on the
network. Network and locally installed
applications should use the Microsoft specified
means to identify areas to write temp files to.

¢ A means of determining exactly what changes are
made during the install both on the filesystem and
the registry.

6.0 Acknowledgements

Throughout the past two to three years we’ve had a
number of individuals that have made this paper
possible. Thanks go out to the entire iA/NT
development team for their hard work and dedication to
developing a quality design engineering environment.

7.0 References

MS Windows NT Workstation Deployment Guide -
Automating Windows NT Setup. Microsoft
Corporation.

Microsoft Zero Administration Kit. Microsoft
Corporation.
http://www.microsoft.com/windows/zak/

Microsoft Windows NT Workstation 4.0 Resource Kkit,
Microsoft Corporation, Microsoft Press, 1996.

*Third party marks and brands are the property of their
respective owners. © 1999 Intel Corporation.

