
Abstract
Microsoft Windows NT deployment and maintenance
is one of the most time consuming tasks for systems
administrators. The primary motivation for the JACAL
project is to streamline this process by creating a set
of free and open tools and guidelines for automating
the installation and maintenance of one or more
operating systems in large computing environments.1

It is well known that Windows NT workstations have
subtle and potentially serious problems when they are
duplicated from a disk image. These problems leave
IT administrators with the task of manually setting up
NT workstations or cobbling together a number of
different automation methods which, in the end, still
require the administrators to manually fill in the parts
which the various automation tools leave out. Most
large scale installation and maintenance tools do not
provide solutions that solve the problem completely
from boot to a completed build with minimal
administrator intervention.

The JACAL project was developed at Taylor
University’s Computing and System Sciences
Department. Our lab and classroom environment
consists of 40 workstations that dual−boot Windows
NT and Linux. We also have 5 dedicated Linux
workstations, 12 dedicated NT workstations, and 7
faculty workstations. Each Windows NT setup has
nearly 80 applications that are available to every user.
Nearly 1 GB of application data is installed to the
local hard drive and over 7 GB of application data is
served to the workstations from the application server.
Manual installation of these applications takes 25+
hours on a single machine. JACAL allows us to fully
rebuild a workstation in under 2 hours with only a few
minutes of administrator intervention.

1 As we have developed this paper the emphasis has
gradually shifted. Most of the time spent in
developing JACAL was spent getting around
architectural and common practice problems with
Windows NT. Likewise, this paper focuses on the
work that we did on the Windows NT side of the
JACAL project. A more appropriate title for this
paper might be "Applying Linux/UNIX Tools and
Methodologies to Aid in Windows NT Installation
and Maintenance."

Requirements
Although our environment is not especially large in
terms of the number of seats, it is very complex in
terms of the number and variety of applications
available from each workstation. Our requirements for
the JACAL project include the following:

� JACAL should provide a quick and flexible way to
rebuild all of our workstations with minimal
administrator intervention. This system should be
applicable to other environments.

� The tools used should be freely available so that
JACAL can be used in organizations with small
budgets.

� The tools used should be Open Source where
possible to allow for third party customization and
extension.

� JACAL should allow Windows NT applications to
be installed so that most components of the
application can be run from the application server.

� JACAL should provide a simple way to add and
repair applications on the workstation.

� JACAL should support the installation of other
operating systems.

� JACAL should be able to install multiple operating
systems on the same workstation (multi−boot)

� Application images created with the JACAL
system should not be order dependent. They should
be installable in any order.

� JACAL should resolve the problem known as
"DLL Hell". In other words, JACAL should
provide a method for resolving shared file
conflicts.

The Problem
According to Microsoft, Windows NT 4.0 should not
be duplicated from a disk image because of the
resulting security issues [SID]. While this is true, most
of the security issues can be cleaned up by a SID
(System ID) changer such as the one available from
sysinternals.com [SYS]. The real problem with
"ghosting" an NT workstation is that the NT setup
process ties itself very tightly to the particular
hardware configuration that it is installed on. This
means that a "disk image" must be created for each
hardware configuration on the network.

Automated Generic Operating System Installation and Maintenance

Joel D. Martin, jmartin@css.tayloru.edu
Compaq Computer Corporation

Aaron D. Brooks, abrooks@css.tayloru.edu
Taylor University CSS Department

JACAL uses NT’s built−in unattended setup process
which uses an answer file2 to automate the process
[BELL]. The unattended solution is less than ideal
because the process is much slower and less flexible
than being able to perform the necessary steps directly
from a JACAL script. However, this appears to be the
only acceptable solution and the future does not look
much brighter. The tools included with Windows 2000
appear to promote the same unattended methodology
included in NT 4.0 [UNA1].

The lack of flexibility of disk duplication3 is not
acceptable for our diverse environment because we
depend on the ability to swap similar but different
components between our many different workstations.
JACAL allows us to rebuild our NT workstations very
quickly on new hardware configurations without
sacrificing flexibility.

Even more serious than the problems with Windows
NT setup is the installation and maintenance of NT
applications. Gomberg, Evard, and Stacey in their
paper [ANL] outline many of the problems related to
large scale application installations on Windows NT.
These problems include:

� NT applications are more complex and monolithic
than typical UNIX applications.

� NT applications are tightly integrated with the OS.
� NT software is oriented to a single−machine and

single−user environment (non−networked).
� NT installation programs are GUI based making

software installation more difficult to extend and
automate.

� Each software installation tunes itself to the
particular NT setup, registry and hardware
configuration.

DLL Hell

One of the largest problems that JACAL solves is what
Microsoft refers to as "DLL Hell"[HELL]. The
problem stems from the monolithic nature of Windows
applications and the tight integration between the
applications and the OS. New applications tend to
carry shared file "baggage"4 that can easily replace
shared system files. This can potentially break other
applications that depend on certain versions of those
shared files.

2 unattend.txt
3 Tools that accomplish this include Ghost and

ImageCast
4 This baggage consists of shared files that the

software company did not create but included with
the application installation. Typically these shared
files originate at Microsoft.

UNIX systems also have administrative issues in
relation to shared files. However, typical UNIX
applications do not actually carry this shared file
baggage and therefore do not have the potential to
break other applications. Instead of breaking other
applications, the new application will simply not work
with the current shared files. These problems can
usually be resolved with symbolic links.

The Options
Microsoft’s System Management Server

The problem of large automated installs has a long and
rich history. Microsoft has many pages of online
documentation relating to the automation of large NT
installations. Microsoft suggests using System
Management Server (SMS) which provides remote
administration of NT machines including installation
of software. We do not consider SMS a viable option
for several reasons. SMS is prohibitively expensive for
our environment [SMS]. SMS does not provide the
ability to build NT (or other operating systems) from
scratch. SMS and the other solutions that we looked at
do not perform the shared file conflict resolution that
JACAL performs. In addition, JACAL now has the
ability to do large−scale remote maintenance of NT
workstations with a combination of our "wintel.pl"
script and the NT Telnet Server "NDTelnet" [NDT].
This is described in more depth in the Detailed System
Description.

Bell Lab’s AutoInstall for NT

In a paper by Fulmer and Levine of Bell Labs[BELL],
they describe a system that is somewhat similar to our
JACAL project. This paper was written in 1998 and
their system has probably developed considerably
since that time. There are many differences between
JACAL and the system that they described. The
bootdisk system at Bell labs used a MS−DOS bootdisk
to initiate the setup process. One of the challenges that
they faced was getting all the necessary tools to fit on
a single floppy. We have avoided this problem by
having only a Linux kernel on our bootdisk which
mounts its root filesystem via NFS. Because of this our
tools and scripts are not limited by the size of a floppy
disk. We are also able to use the JACAL bootdisk to
support the installation of other operating systems.

UBS AG’s State Driven Solution

One of the more promising solutions was a state driven
system recently documented by Martin Sjolin
[STATE]. This state driven system stores application
configuration information in a central repository which
is queried by a client side component whenever an
update or installation is performed. This state driven
system corresponds to the second phase of our JACAL

system. It assumes that the client workstations have a
complete NT setup. Their state driven solution quite
possibly more flexible than our system and provides
more administrative maintenance tools. However, it is
unclear whether shared file conflict resolution could
be easily accomplished using this system. In the future
we may incorporate some of the state driven features
of the system into the JACAL project.

The Solution
To meet our requirements for JACAL, we developed
an internal system at Taylor University’s Computing
and System Sciences Department which allows us to
quickly rebuild, from scratch, every one of our lab and
classroom machines with both Linux and Windows NT
(dual−boot) and a full set of applications on both.

Many of the past solutions focus on using the
installation tools that are preferred for each application
such as InstallShield, a custom setup program for that
application or the new Windows Installer. However, in
our environment, this is unacceptable because we need
more control over the configuration of the target
machines. We have approximately 80 applications
installed on each workstation. Without our conflict
resolution system, the sheer volume of applications
installed resulted in constant conflicts as new
applications replaced shared files.

We have developed a system based on Microsoft’s
"sysdiff" program5 that adds the capability to resolve
shared file conflicts. The addition of this functionality
has made the program suitable for nearly all of our
applications. This conflict resolution capability is one
of the biggest differences between our solution and
other solutions that have been implemented in the past.

NT Service Packs6 are the main exception to our
conflict resolution system. Microsoft service releases
make changes that are too dynamic and far reaching to
be properly replicated by a system difference tool such
as sysdiff.

JACAL Overview
There are two phases to the JACAL system: the
JACAL loader phase and the individual OS and
applications install phase. We currently implement the
first phase as a single bootable floppy with a Linux
kernel that NFS7 mounts its filesystem. The JACAL
loader scripts are then executed. At this point the

5 This tool is now called "Discover" under Windows
2000

6 We consider Microsoft Internet Explorer to be
equivalent to a Windows Service Pack

7 Network File System common on UN*X networks

administrator is asked for the machine name, and is
given a choice of several different standard machine
setups. The options define partition sizes, applications
to install, and whether to make the machine multi−
boot or dedicated, or to simply refresh the existing
machine setup.

Setting up the local Linux partition(s) is a simple
matter of using Andrew Tridgell’s popular rsync tool
[RSYNC] to mirror our existing Linux filesystem. The
Linux configuration is then localized completing the
Linux installation. The loader phase also copies the
Windows NT install files to the workstation in
preparation for the second phase.

Since NT cannot be fully setup from the loader phase,
the second phase is specifically related to Windows
NT. This phase could easily be used to install any
other OS that has "ghosting" difficulties and has the
ability to perform a scripted installation. The second
phase begins when the loader phase reboots the
machine. The Windows NT unattended setup is
executed at this point.

When Windows NT has completed its setup, a string
of Perls scripts are executed that install applications,
Service Packs, and drivers that cannot automatically
be specified in the Windows NT unattended setup
answer file.

The unattended installation capability of Windows and
its service packs are built into the software. We do not
install regular applications in this "unattended"
method. Instead, we use Microsoft’s sysdiff utility to
capture the changes that an application makes to a
bare system. We then do some semi−automated
processing of this "diff" output. First, we change the
registry and Windows shortcut paths to allow the
application to run from a network server. Then we
process the captured directory structure and resolve
shared file conflicts, such as DLLs, using a script that
allows us to symlink8 these files to the chosen version
of the file. When the application is installed the
symlinks are dereferenced and the chosen shared file is
used.

At the end of the installation process the administrator
is only required to change the local administrative
password to complete the workstation setup. JACAL
also provides post−setup maintenance tools9.

8 UN*X platforms allow pseudo−files, called
symlinks, which point to the original file. This
referencing is transparent unlike Microsoft ".lnk"
files

9 These tools include the Perl based scripts
"wintel.pl" and "reghack.pl"

Detailed System Description
(See above diagram)
JACAL Loader

1. (25 Seconds) Boots Linux kernel off of floppy disk
� The 3½" floppy is ext2fs formatted with only a

Linux kernel booted by lilo
� The kernel is compiled with the following

� NFS root
� NFS client
� Kernel auto−configuration
� DHCP/Bootp10 client
� As many NIC11 cards compiled in as the

administrator would like12

� This disk is all that is needed to start the setup
on the client end

2. (20 Seconds) Runs Linux startup environment
� Gets IP address from DHCP
� Mounts linuxroot export from NFS Server
� Runs modified init scripts

3. (0−5 Seconds) Automatically detects or queries
administrator for machine identity

10 Dynamic Host Configuration Protocol/Boot
Protocol

11 Network Interface Card
12 In our case, all ethernet cards

� Can be fully automated
� Database lookup of MAC ID from network

card or similar hardware ID (CPUID)
� If DHCP is setup to assign the same address

to the same machine, DNS13 can be used to
figure out machine name

� Administrator can be manually queried for
� Machine name
� Configuration (select single menu item)

� Target drive is partitioned if need be
� Partitioning can be relative based on hard

drive size
� Swap partitions can be created dynamically

based on the amount of RAM
4. (25 Minutes optional) Linux Install14

� Format ext2fs partition (if needed)
� Rsync filesystem from server
� Modify configuration files to reflect machine

identity
5. (5 Minutes optional) NT Partition Preparation

� Format FAT16 partition (Convert to NTFS later
if desired.)

� Copy NT installation files

13 Domain Name System
14 25 minutes is based on a "from scratch" Linux

installation. If the partition already has linux rsync
will often take less than 5 minutes

Get IP and root f il e system

Set Instal l Opt ions

Conf igure Part it ions

Copy NT instal l f i l es and patches

Mirror master Linux workstat ion NT

Linux

Local ize Linux configuration

Linux Onl y

NT Al so Copy & l ocal ize NT instal l scripts Execute appl icat ion batch (Perl)

DHCP Server

Done

Reboot

Another batch

NFS Server

Rsync Master

SMB Server

JA CA L String Of Perls

JA CA L Loader

JACAL
Process & Data Source
Diagram

� Copy NT installation patches
� Parse and customize NT installation scripts and

configuration files
� Run spp client to reset domain machine account

password on the SaMBa server

JACAL String Of Perls (Windows NT Installation)

In order to run this step the JACAL Loader (above)
must have prepared the NT target partition. Quite
possibly the most frustrating problem for an
administrator is how often Windows NT 4.0 requires a
reboot of the system. Events like changing the cache
directory for Internet Explorer 5 to another directory
requires a subsequent shutdown and reboot.

When automating the NT installation process, it
became apparent that the first thing we would have to
[conquer] would be constant administrator
intervention to start the next phase of the install after a
reboot.

The "String of Perls" in this phase of the installation
refers to a customizable reboot management system
built on RunOnce15 registry keys, batch scripts and
Perl scripts. (Initially there were only Perl scripts, now
most of the .pl’s are .cmd’s which are faster, lighter
and still do the job.) These scripts insert the RunOnce
key for the following section of the install and then run
the next step in the installation process which requires
a reboot of the machine upon completion.

The NT SOP install takes 45 minutes on a single
machine.
1. (5 Minutes) NT unattended install
2. (5 Minutes) NT Service Pack 6
3. (5 Minutes) Internet Explorer 5
4. (25 Minutes) Application installations
5. (2 Minutes) NT SMP kernel installation
6. (2 Minutes) Display adapter installation
7. (1 Minute) Cleanup scripts

The last step is only included here for accuracy. At the
time of this writing the cleanup scripts run after a
reboot which is entirely unnecessary. This step can be
merged with the preceding step. Cleanup includes
removing installation files and directories from the
target drive and changing the password for the
"Administrator" account. At the current time the
administrator password must be set manually. This is
the only human intervention required after the initial
45 second floppy disk boot.

The total sum of human interaction is listed below:
1. Place floppy disk in drive and power up machine

15 HKEY_LOCAL_MACHINE\SOFTWARE\...
...Microsoft\Windows\CurrentVersion\RunOnce

2. Remove floppy disk after floppy access completes
3. If install process is not set up to automatically

detect machine identity, type in machine name and
select machine configuration from numbered
menu.

4. Play Quake Arena16 for 25 to 75 minutes depending
on install17

5. If NT installation, change administrator password

Application Image Creation
The process used to create an application image is
described in detail on the JACAL website. The basic
steps that we use to create NT application install
images and where the steps are performed are as
follows:
1. (NT) Snapshot a clean system using "sysdiff.exe

/snap"
2. (NT) Install the application locally
3. (NT) Capture changes made by the install using

"sysdiff.exe /diff"
4. (NT) Extract the "difference" files to the SMB

install share using "sysdiff.exe /inf /m"18

5. (NT) Rename the "difference" files to use long
filenames using "parse−rename.pl"

6. (NT) Repath Windows shortcuts (* .lnk) using
"repath−shortcuts.pl"

7. (UNIX) Repath the registry settings file (.inf) and
Windows .ini files using regular expressions

8. (UNIX) Create the SMB execution share and move
the main application directory to the share

9. (UNIX) Resolve shared file conflicts using
"mvdlls.pl" and "filelink.pl"

10.(UNIX) Zip up install files for distribution
11.(NT) Apply an application

Step 6, 7 and 8 may be eliminated if the entire
application is going to be installed locally to every
workstation. There are also some rare and intelligent
applications that can be installed directly to a UNC19

share. This makes the application image creation
process much simpler. To perform this type of
installation, step 8 is done first and steps 6 and 7 can
be eliminated. When the application is setup it should
be installed to the execution UNC share.

Application DLL Resolution

The most significant contribution of the JACAL
project to NT software installation is the shared file

16 Or Solitare if you are concerned about network
bandwidth

17 Up to 120 minutes if many (25+) machines are
running in parallel (These times are based on
builds run on our 100Mb ethernet network)

18 According to Microsoft documentation "/m" is the
"mandatory option"

19 Universal Naming Convention

conflict resolution system. In Taylor University’s
computer science labs we run approximately 80
applications on all of our NT workstations. Before we
implemented conflicting file resolution we had
significant problems with over 2600 files in conflict.
The conflict resolving software is composed of two
Perl scripts, "mvdlls.pl" and "filelink.pl."

These two scripts detect files which are in common
between applications and resolve these conflicts.
These scripts are run server side as they make UN*X20

symlinks which are transparent to the SMB protocol.
For all practical purposes, these tools necessitate
running SaMBa 21on a UN*X server.

Applications are stored in separate directories. Each of
these directories is the result of a "sysdiff /inf"
command. The sysdiff program creates "C" and "$$"
directories which represent "C:\" and "C:\winnt\"22.
Each of these special directories beneath the
application directories are recursively searched by
"mvdlls.pl" for files that conflict with other
applications. When a conflicting file is found,23 the file
is moved to a common _shared_ directory structure.
When each conflicting file is placed in the _shared_
structure it is placed in a subdirectory path relative to
the C:\ drive. The file is also renamed so that any
internal file version24 is added as a component of the
file name as well as the application that the file came
from. This convention prevents files from being
overwritten by colliding versions in other applications.

Once all conflicts have been detected by "mvdlls.pl"
and moved out into the common _shared_ directory,
"filelink.pl" is used to select which version of each
conflicting file will be part of the final install.

The actual file resolution is achieved by creating a
symlink with the original file name which points to the
desired version of the file which the administrator has
determined should be deployed.

Most file resolution is fairly simple. The largest
portion of conflicting files on our site are fonts shared
between different Microsoft publishing programs. The
key resolutions reconcile different DLL, EXE and
OCX versions. Usually in these cases, the most recent
version of the executable or library is the best choice.

20 UN*X commonly refers to all variations of Unix
21 SaMBa is a UN*X implementation of Microsoft’s

Service Message Block (SMB) protocol
22 Actually the directory is the environment variable

%SystemRoot%, typically "C:\winnt\"
23 Not just DLLs as the name "mvdlls.pl" suggests
24 File versions are grabbed from internal

information from DLLs, EXEs and OCXs

However, this is not always the case.

An example of the resolution process between Visual
Studio 97 and Windows Scripting Host would look
like this:

Conflicting files:
 VisualStudio/$$/system32/scrrun.dll
 WSH/$$/system32/scrrun.dll

Moved to files in the _shared_ directory:
 shared/$$/system32/scrrun.dll.4.0.0.2926.VisualStudio
 shared/$$/system32/scrrun.dll.3.1.0.2430.WSH

Since both files are from Microsoft we create a
symlink:
 shared/$$/system32/scrrun.dll
Which points to the most recent version:
 shared/$$/system32/scrrun.dll.4.0.0.2926.VisualStudio

"filelink.pl" currently has two modes. The first
prompts the administrator for file conflicts which have
not been resolved. The second mode prompts the
administrator to resolve all conflicting files. In the
future we will be adding the capability to provide a list
of applications for "filelink.pl" to resolve rather than
redoing all file resolutions.

Application Installation

The applications or portions of applications that are
targeted for the local workstation are stored in separate
directories. Each directory is structured like the flat
file inf generated by sysdiff. There is an ".inf" file
which contains all of the registry and ini
modifications. There are also the standard "C" and
"$$" directories. However, within these directories are
zip files containing the subdirectories and files for the
applications. Compressing the applications in this
manner reduces the copy time and network bandwidth
utilization while adding checksums to the file transfer
process.

The installation program copies down the zip file from
each of the inf directories. After the archive is on the
local disk, files are extracted to their final locations. If
the file is read only (i.e. already in use by another
program) it is detected from the output of the
unzipping program. The file is then placed in the
C:\temp directory and "MOVEEX.EXE" is run to
place the appropriate registry key into the kernel so
NT will move the file on the next reboot. Since
applications already have their conflicting files
resolved, multiple calls to "MOVEEX.EXE" do not
cause any problems.

The applications are all installed in a serial fashion
without rebooting. Although at our site we install all

applications, it would be very easy to modify the
installation serializing script, "zipinst.pl," to check a
file that lists applications that should be installed on
the workstation. This method results in an incredibly
fast and flexible installation of applications with high
reliability and complete conflicting file resolution.

Workstation Maintenance

For performing maintenance of workstations that have
already been rebuilt we created a Perl script,
"wintel.pl", that allows us to execute functions on a
large number of workstations in parallel. This script is
built to take advantage of Nicolas Deschatrettes’s NT
Telnet Server. We use it primarily as a way of
applying applications and applications fixes in batch.
The "wintel.pl" script takes the following parameters:
a file that has the list of commands to run on the target
machines and a file that has a list of the machines to
execute the commands on.

Design Philosophy
Eliminate administrator intervention

Perhaps one of the primary forces driving the
computing and information revolution is the belief that
repetitive actions performed by people should be
handled by Information Technology. It follows that
administrators should not be required to manually
build multiple workstations that are nearly identical.
JACAL is our attempt to eliminate repetition from
standard NT and Linux workstation deployment.

Use the best tools for the job
Linux is optimal for manipulating and moving file
data around in a heterogeneous environment. Linux is
also good at automatically detecting hardware
configurations. Auto−detection of hardware is one of
the issues that the Bell Labs team [BELL Section 7.4]
had trouble performing under NT with their
AutoInstall. Linux allows us to easily retrieve and
parse information about the hardware. After hardware
information is gathered it is used to modify the course
of the install process. We currently only use this to
detect whether NT should support multiple processors
and to detect which video card drivers to use. This
auto−detection system could be extended to account
for much greater variability in hardware
configurations.

Linux does not have tools available to install NT, so
we use NT’s "SETUP.EXE" for this stage. We use Perl
as our primary scripting language, instead of NT batch
scripting, because it is very flexible and cross−
platform. Eventually we plan to eliminate all the
UNIX shell scripts that are still part of JACAL and
replace them with Perl scripts.

Use as few development tools as possible

The JACAL project attempts to minimize complexity
by limiting the number of development tools. This
philosophy keeps JACAL slim and enhances the
project’s portability, extensibility and maintainability.
There is a trade off between using the best tools for
the job and using as few tools as possible. We have
leaned toward using the best tool but have
intentionally designed the system so that the different
tools can be replaced or eliminated with a
corresponding loss of flexibility or functionality.
JACAL currently relies on the following development
tools: Perl on both Windows and Linux, UNIX shell
scripting, NT batch language, Microsoft’s sysdiff
utility, Microsoft’s ScriptIt tool, limited C.

In keeping with our philosophy of using as few
development tools as possible we have designed
JACAL without any dependence on NT/2000 Server.
In some environments, including ours, Windows NT is
only used for desktop workstations. This design
philosophy will allow JACAL to be used on other
networks like ours and also on networks that contain
NT Servers.

Rely on as few network services as possible

Our setup of JACAL requires the following network
services: DHCP, NFS, and SMB, and a Linux rsync
server. Each one of these services could be eliminated
but at the cost of flexibility. DHCP could be
eliminated by having a fixed IP address for each build
disk. This would require a system to keep track of and
give each boot disk a unique IP address.

NFS could be eliminated by storing the JACAL loader
and the NT install files on a larger boot media such as
a CD−ROM or on a permanent partition on each
machine’s hard drive. This would have the added
benefit of increased build speed but changes to the
loader or the install files would be more difficult and
time consuming. The NT install files could also be
moved from the NFS server to the SMB server.

The application files and install images served from
the SMB server could likewise be moved to a local
media but the result would be that applications would
have to be installed to run locally. This would also
limit changes to the applications and would limit the
number and size of the applications that can be
installed.

Use tools that are flexible and can be automated

We use the criteria of flexibility and automation in
evaluating tools for inclusion in the JACAL system.

As an example, one of the major tools that we choose
to use for JACAL was Microsoft’s sysdiff utility.
Although sysdiff itself is not very flexible, it uses a
flat file output format that has allowed us to extend the
sysdiff system to fit our needs very nicely.

One note of concern in this area is that Microsoft has
replaced the sysdiff system in Windows NT 4.0 with
VERITAS WinINSTALL LE included in Windows
2000 [WINST]. Sysdiff allowed us to directly access
and manipulate the information that was captured
during the snapshot process. This has allowed us to
eliminate shared file conflicts and to be able to
properly maintain and change the application image
data as our environment changes. Hopefully we will be
able to find a similar method of extracting information
from Microsoft’s .MSI install files which are created
with VERITAS WinINSTALL LE.

Future Goals
Eliminate the JACAL Bootdisk

The most ambitious goal of the project is to move
away from the boot disk based model. The JACAL
loader would be placed on a small partition on each
machine. At the reboot the script would check the
network to see if that machine’s rebuild flag had been
set and then proceed to either re−install the entire
setup (specified in a network configuration file) or
simply continue to boot the machine. This would
increase automation and allow the systems to be
locked down by turning off floppy disk boot
capability. A bootdisk would only be necessary on a
new machine or to update the JACAL boot partition.

Server Controlled Rebuilds

A related goal is a server based command would give
the systems administrator power to schedule automatic
machine builds. The syntax would be something like:

jacal date−time <machinename>...
At the scheduled time the flags for each of the
machines in the list would be set for a rebuild and the
machines would then be remotely rebooted.

The BeeHive Project

One of the headaches that we have had to deal with in
creating application images is that the user registry
hive settings must be entered into the global login
script. This complicates the application image creation
process and slows down user logins. We have started
an independent project named BeeHive to create a
cross−platform NT/2000 registry editor. This will
allow us to edit, repair and optimize roaming profiles
from our Linux user space server [BEE].

Rewrite Sysdiff

Another future goal is to write our own system
difference tool so that we can simplify the application
image creation process and also perform conflict
resolution of registry entries and capture incremental
changes automatically. We may also write a
component which allows us to extract information
from Microsoft’s new ".MSI" install file format.

FCP (File Cast Protocol)

One project that our team has embarked on is not
directly part of the JACAL project but will
complement it greatly. This task is to create a cross−
platform multi−cast FTP style system so that a large
number of workstations can be rebuilt simultaneously
with minimal network traffic.

Conclusions
The art of large, automated installation is in a state of
rapid change. Both the UNIX and Windows world
seem to be converging in the way that large
installation and maintenance is carried out. Many
UNIX applications are becoming more dependent on
local machine resources and as such have become
more complicated in their installation process.
Microsoft is moving towards a more modularized and
protected installation scheme with the Windows
Installer under Windows 2000. Both of these trends
will certainly continue as UNIX moves toward the
desktop and Windows moves toward the server.

JACAL was developed in a very heterogeneous
environment and has picked the best parts of each
platform in an attempt to create a more manageable
network. JACAL is continuing to develop. One of the
upcoming challenges will be coexisting with the new
Windows Installer system. Another area of growth will
be in further development of multi−boot functionality.
This is made more important with the growth of viable
x86 based operating systems such as BeOS, the BSD
series, Solaris, Linux, etc.

The components of JACAL have been released as an
Open Source project in order to spur continued growth
and to give back to the community which made
JACAL possible. Hopefully, JACAL will be a helpful
tool for network administrators in many different
environments.

JACAL has a permanent home thanks to VA Linux’s
SourceForge site. At this site you can find the latest
documentation and also download the latest
distribution of JACAL:

http://jacal.sourceforge.net

Works Cited:
[ANL] A Comparison of Large−Scale Software Installation Methods on NT and UNIX, Michail Gomberg, Remy

Evard and Craig Stacey, Mathematics and Computer Science Division, Argonne National Laboratory
�

http://www−fp.mcs.anl.gov/~stace/Papers/NTLisa1998/ntapps.html
�

http://www−fp.mcs.anl.gov/~stace/Papers/NTLisa1998/ (LISA Presentation)
[BELL] AutoInstall for NT: Complete NT Installation Over the Network, Robert Fulmer and Alex Levine, Lucent

Technologies, Bell Labs
�

http://www.usenix.org/publications/library/proceedings/lisa−nt98/fulmer.html
[STATE] State Driven Software Installation for Windows NT, Martin Sjolin, Warburg Dillon Read

�
http://www.usenix.org/events/lisa−nt99/sjolin.html

[HELL] The End of DLL Hell, Rick Anderson. MSDN Library, January 2000
�

http://msdn.microsoft.com/library/techart/dlldanger1.htm
[SID] Windows NT Duplication Problems

�
http://support.microsoft.com/support/kb/articles/q162/0/01.asp

�
http://support.microsoft.com/support/kb/articles/Q183/2/53.asp

[SYS] Sysinternals − Advanced utilities, technical information and source code related to Windows NT/2K
�

http://www.sysinternals.com/

[UNA1] Windows 2000 Professional Automated Deployment Options: An Introduction
�

http://www.microsoft.com/windows2000/library/planning/client/autodeploy.asp
[SMS] Microsoft Announces Availability of Systems Management Server 2.0

�
http://www.microsoft.com/presspass/press/1999/feb99/smspr.asp

[NDT] NT Telnet Server (NDTelnet)
�

http://hem.passagen.se/deschatr/ndtelnet.htm
[WINST] Windows Installer

�
http://www.microsoft.com/windows2000/library/howitworks/management/installer.asp

[WINST] Step−by−Step Guide to Creating Windows Installer Packages
�

http://www.microsoft.com/windows2000/library/planning/management/veritas.asp
[BEE] BeeHive − Cross−platform registry editor

�
http://sourceforge.net/project/?group_id=1987

[RSYNC] rsync is an open sourceutility that provides fast incremental file transfer
�

http://rsync.samba.org/

References:
MS Windows NT Workstation Deployment Guide − Automating Windows NT Setup

�
http://www.microsoft.com/TechNet/winnt/winntas/technote/implemntintegra/gdautset.asp

An Unattended Windows NT Workstation Deployment
�

http://www.microsoft.com/TechNet/winnt/ntwrkstn/technote/ntinstal.asp
Windows NT 4.0 FAQs: Deployment and Unattended Setup Questions

�
http://www.microsoft.com/TechNet/winnt/winntas/technote/troubleshooting/topntqa1.asp

Easier Windows NT Workstation 4.0 Deployment with Disk Image Copying and the MS System Preparation Tool
�

http://www.microsoft.com/TechNet/winnt/ntwrkstn/prodfact/sysprep.asp

Chapter 11 − Windows NT Workstation Unattended Modular Build
�

http://www.microsoft.com/TechNet/winnt/winntas/technote/implemntintegra/manntnet/ntnfch11.asp
Automating Windows NT Setup Deployment Guide Supplement (Sysdiff)

�
http://www.microsoft.com/TechNet/winnt/winntas/technote/implemntintegra/advsysdf.asp

Microsoft’s IE Administration Kit
�

http://www.microsoft.com/windows/ieak/
Microsoft’s Office 2000 Resource Kit

�
http://www.microsoft.com/office/ork/2000/

ActiveState Perl win32 FAQ
�

http://www.activestate.com/ActivePerl/docs/perlwin32/perlwin32faq.html
The MS ScriptIt Utility

�
http://www.microsoft.com/TechNet/winnt/Winntas/tools/scriptit.asp

Top Ten Windows NT Support Issues
�

http://www.microsoft.com/TechNet/maintain/topsup.asp
Customizing the Windows NT 4.0 Upgrade Process

�
http://www.microsoft.com/TechNet/winnt/winntas/technote/planning/nt4cusup.asp

