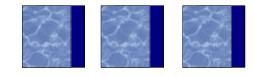

Supernetworking: Virtual Address Resolution at the Edge

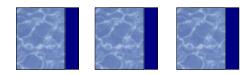
Christoph Schuba

Caronni, Chang, Kumar, Landau, Schuba, Scott Security Research Group Network&Security Center Sun Microsystems Laboratories 901 San Antonio Road USA – Palo Alto, CA 94303



Outline

- Motivate and present our model of secure virtual networking
- Explain requirements for addressing in global/virtual network, focus on edge
- Describe the prototype status quo and future work
- Draw conclusions


Public Utility Computing Model

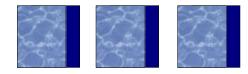
Secure Communication:
 Supernets

- Secure Storage
- Secure Computing
- Security Management



Motivation for Public Utility Computing (PUC)

- Dependence on computer networking
- Requirement for ubiquitous access to data and services, e.g., e-commerce, sales staff, remote employees, etc.
- Desire for network security vs.
 Desire for open access

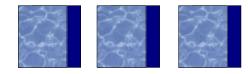


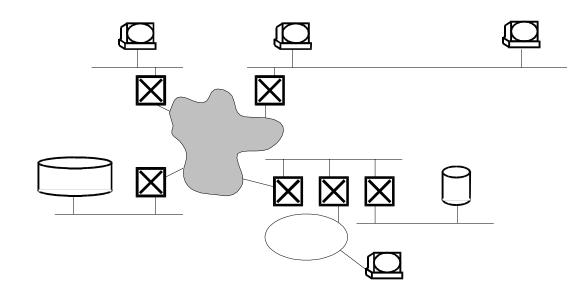
Motivation for PUC (cont.)

- $\Box \text{ IT expertise } \neq \text{ core business expertise}$
- Outsourcing of information infrastructure needs in a secure fashion
- Benefits through economies of scale:
 - □ cost effectiveness,
 - no provider lock-in,
 - leveraging today's technology,
 - access to new technologies

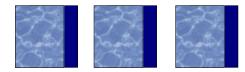
Motivation for PUC (cont.)

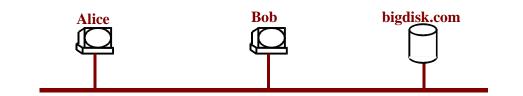
- □ Insufficient attempts at security problem:
 - □ Firewall technology
 - Virtual private networks
 - □ Reverse proxies, e.g., iPlanet (sun.net)
- Drawbacks and problems:
 - Inefficiencies in operation
 - □ Lack of flexibility for network creation/dissolution
 - Difficulty in maintainance and administration
 - High cost

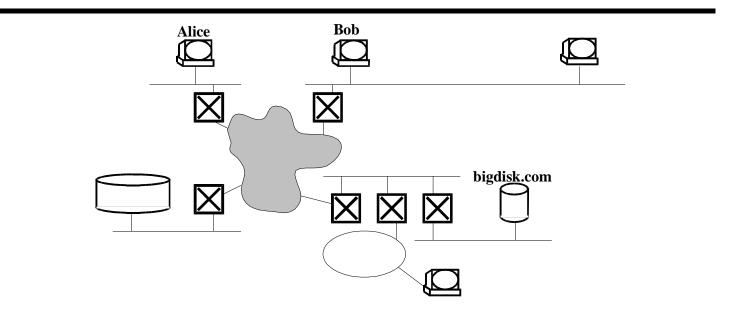


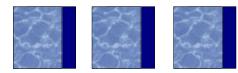

Articles of Faith

- □ Large number of network attached devices
- Security requirements
- Dynamic coalition capability
- □ Lifetime independence
- **Reuse of existing applications**
- Outsourcing of communication infrastructure

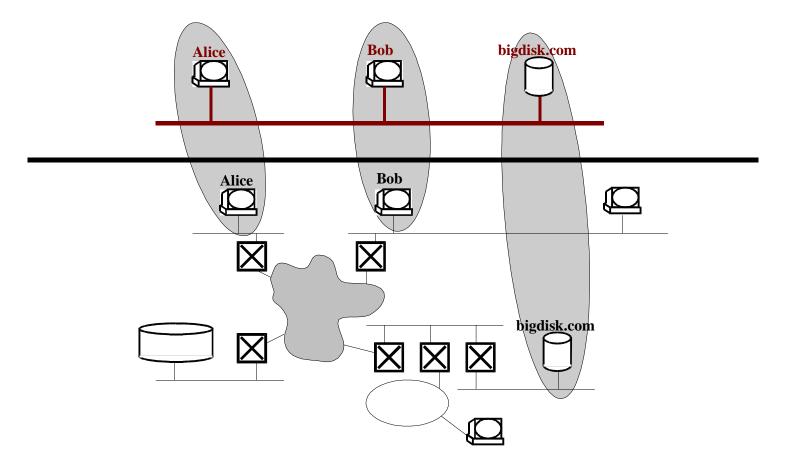


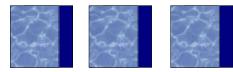

Today: Building Communities around Networks



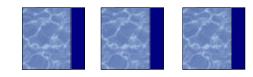


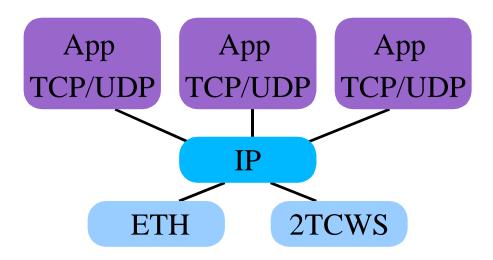
Goal: Building Networks around Communities



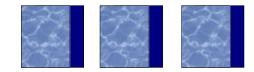


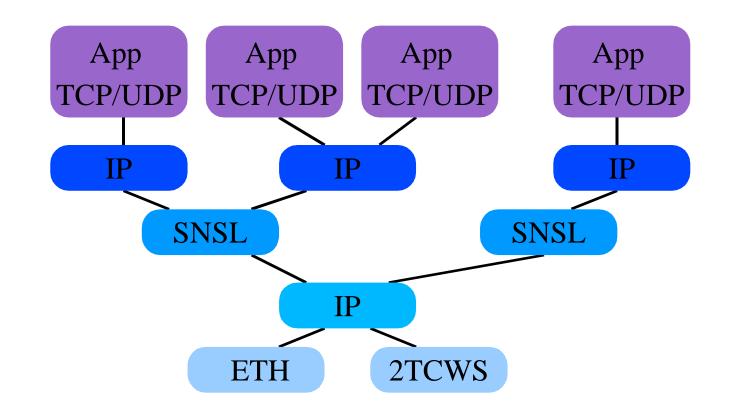
Goal: Building Networks around Communities




Addressing at the Edge

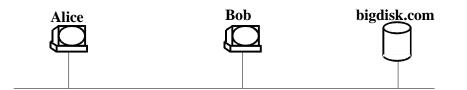
 Legacy: Lots of applications that use TCP/IP
 Desire: Independence of underlying transport (¬hw)
 Realization: IP is global *glue*

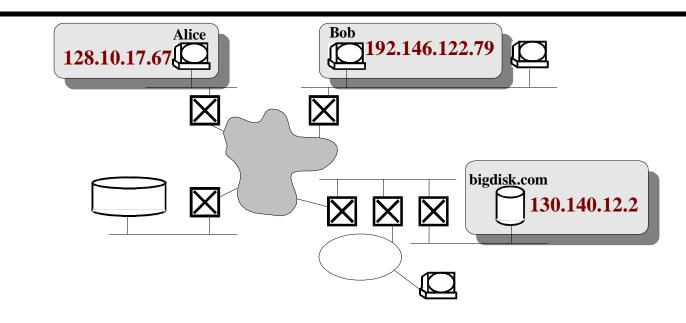


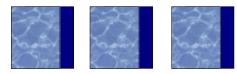

IP: Global Glue



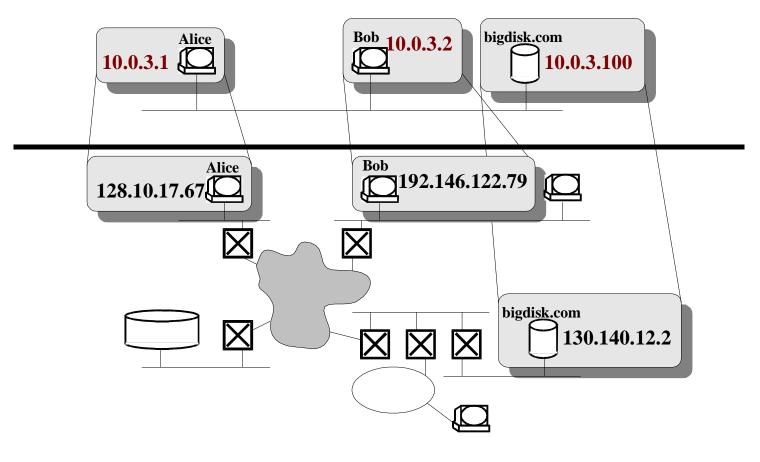
IP: Global Glue (cont.)

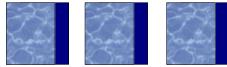




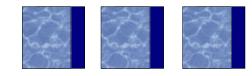


Addressing in Supernets





Addressing in Supernets (cont.)

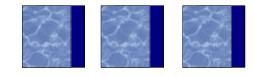


Five Architectural Components

- Authentication and Admission Control
- Communication Security Services
- Key Management
- Virtual Address Resolution (VARP)
- OS-level Enforcement of Node Compartmentalization

Authentication and Admission Control: sasd, snlogin

- Multiple pluggable authentication mechanisms
- Policy encoding separate from enforcement
- Virtual IP address (vaddr) request vs.
 assignment in DHCP style
- Node = equivalent to a host in supernets (identified by a supernet id and IP address)



Communication Security Services: SNSL

- Network security services for
 - Confidentiality
 - Integrity
 - Authenticity
- □ IPSec encapsulation in tunnel mode
- Avoid IPSec NAT problem



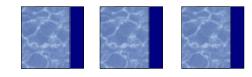
Key Management: kms, kmc, kmd

- Groupkey management
- All group members share the same key:
 Channel
- Policy-based key revisions on events
 - □ join, leave, time interval
- □ Supernet channels are *small* enterprise networks that are secured against *outside*.



Virtual Address Resolution Protocol (VARP)

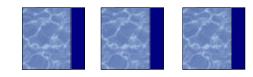
- □ Assume: Endpoint addressability:
 - □ Currently IPv4
 - □ Future: IPv6, DNS names, (RA,IRT), etc.
- Mapping between
 - Virtual IP addresses (vaddrs) and
 - □ IP address of computer hosting nodes



Virtual Address Resolution Protocol (cont.)

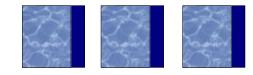
□ Example:

0x00000123:10.0.3.2 - 192.146.122.79
Localized scope (per supernet)
Endpoint requirements:
VARP client functionality
Dynamic configuration of VARP service



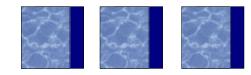
OS-level Enforcement of Node Compartmentalization

OS enforcement of process encapsulation
 Inheritance of supernet membership on fork()
 Caching of address mappings and keying material



Status Quo

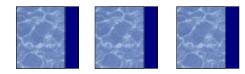
- Working prototype of communication component (on Sparc, and Redhat Linux, IPSec, C, Java).
 Limited availability as RedHat rpm
- Several design documents, white papers, presentations, related patents



In Progress + Future Work

Prototyping of storage component (cnfs)

- □ Storage key management under development
- □ Secure Computing?
- □ Management Component?



Summary

- Create autonomous, secure networks around dynamically changing communities
- Requirements on infrastructure
 - Endpoint addressability
 - PUC enabling services: sas, varp, km
- **Requirements on endpoints:**
 - □ Address of admission control: DNS, config
 - □ Client sw for VARP, group key mgmt
 - □ SNSL layer

christoph.schuba@sun.com

