
USENIX Association

Proceedings of the
FAST 2002 Conference on

File and Storage Technologies

Monterey, California, USA
January 28-30, 2002

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

PersonalRAID: Mobile Storage for
Distributed and Disconnected Computers

Sumeet Sobti∗ Nitin Garg∗ Chi Zhang∗ Xiang Yu∗

Arvind Krishnamurthy† Randolph Y. Wang∗

Abstract

This paper presents the design and implementa-
tion of a mobile storage system called a Personal-
RAID. PersonalRAID manages a number of discon-
nected storage devices. At the heart of a Personal-
RAID system is a mobile storage device that trans-
parently propagates data to ensure eventual consis-
tency. Using this mobile device, a PersonalRAID
provides the abstraction of a single coherent stor-
age name space that is available everywhere, and it
ensures reliability by maintaining data redundancy
on a number of storage devices. One central aspect
of the PersonalRAID design is that the entire stor-
age system consists solely of a collection of storage
logs; the log-structured design not only provides an
efficient means for update propagation, but also al-
lows efficient direct I/O accesses to the logs with-
out incurring unnecessary log replay delays. The
PersonalRAID prototype demonstrates that the sys-
tem provides the desired transparency and reliability
functionalities without imposing any serious perfor-
mance penalty on a mobile storage user.

1 Introduction

As disk density continues to grow at a phenom-
enal annual rate of 100% [3], the cost, form factor,
and capacity of stable storage continues to improve
dramatically. One consequence of these dramatic
technological advances is the emergence of highly
compact secondary storage, which can be seamlessly
integrated into devices of all shapes and forms. As
technology continues to improve, as decentralization
is carried to its logical next step, and as tradition-
ally analog information is increasingly being turned
into digital representations, it is not unreasonable to

∗Department of Computer Science, Princeton University,
{sobti,nitin,chizhang,xyu,rywang}@cs.princeton.edu.

†Department of Computer Science, Yale University,
arvind@cs.yale.edu.

This work is supported in part by IBM. Wang is sup-
ported by NSF Career Award CCR-9984790 and Krishna-
murthy is supported by NSF Career Award CCR-9985304.

Figure 1: An IBM Microdrive. On the left is a 1 GB
Microdrive shown in its packaging. On the right is the
same drive shown open with a U.S. quarter. (Courtesy of
IBM. Unauthorized use not permitted.)

conjecture that such mobile storage may become a
dominant form of storage in the near future, espe-
cially for personal user data, subsuming conventional
disks enshrined in machine rooms.
Unfortunately, as mobile storage flourishes, high-

performance universal network connectivity may
still not be available everywhere. At any instant,
only a small number of devices may be connected to
each other; and a mobile storage user cannot always
count on an omnipresent high-quality connectivity
to a centralized storage service. A mobile storage
solution that does not rely solely on network connec-
tivity for managing a collection of distributed (and
possibly disconnected) devices needs to be found.
We also share the belief that a user’s attention is
a precious resource that the system must carefully
optimize for, and a central goal of the system is to
ease the management of these disconnected devices.
We identify three important desirable features of

such a mobile storage solution. (1) The availability
of a single coherent name space. A user who owns
a number of storage devices should not be burdened
with the chore of hoarding needed data and propa-
gating updates manually. Ideally, even when these
devices are permanently disconnected, the user still
sees a single coherent space of data regardless where
she is and regardless which device she uses. The
user should not have to modify her existing appli-
cations to enjoy these benefits. (2) Reliability. The
view that only centralized servers provide reliability
guarantees and mobile devices are inferior second-
class citizens, whose data is expendable, is not al-

ways acceptable: the frequency and duration of pe-
riods where a mobile storage device is disconnected
from a central server can be significant enough that
one must have some degree of confidence over the
reliability of data. (3) Acceptable performance. The
provision of the transparency and reliability features
listed above should not impose a significant over-
head. Ideally, the user of the mobile storage system
should always be able to enjoy a level of performance
that is close to that of the local storage.
In this paper, as a first step, we describe a mo-

bile storage system called a PersonalRAID that is
designed to support a collection of disconnected and
distributed personal computers. In addition to these
end hosts, central to the PersonalRAID design is a
portable storage device, such as the 1 GB IBM Mi-
crodrive (Figure 1) used in our prototype. We call
this device the Virtual-A (VA). The VA is named
so because: (1) it is analogous to a conventional re-
movable storage device (which is often named drive
A on Windows PCs), and (2) it provides the illu-
sion of a storage device whose capacity is far greater
than the device’s physical capacity. The VA allows
the PersonalRAID system to achieve the three goals
enumerated above: (1) The VA transparently prop-
agates updates among disconnected hosts to ensure
eventual consistency. It helps provide a single stor-
age name space that is transparently available on all
hosts. It supports existing file systems and appli-
cations without modification. (2) The VA provides
temporary redundancy before data is propagated to
multiple end hosts so that the PersonalRAID system
can tolerate any single-device loss. (3) The Person-
alRAID system intelligently chooses between a local
disk and the VA device to satisfy I/O requests to
mask propagation delays and minimize overhead.
The central aspect of PersonalRAID design is its

use of a distributed log-structured design: the collec-
tion of distributed logs is the storage system: there
is no other permanent structure hosting the data.
This design not only allows PersonalRAID to propa-
gate updates among the logs throughout the system
efficiently, it also allows a user to satisfy her I/O
requests directly from the logs without having to
wait for propagations to complete. We have imple-
mented a prototype PersonalRAID system. Our ex-
periments demonstrate that the system achieves the
transparency and reliability functional goals without
imposing any serious performance penalty.
The rest of the paper is structured as follows.

Section 2 describes the user experience and the main
operations of a PersonalRAID system. Section 3
presents the rationale and the details of the log-
structured design of the system. Section 4 describes

Figure 2: A usage scenario of PersonalRAID. The mobile
user carries the Virtual-A device as the user travels among
disconnected computers (such as a machine at home, a
machine in the office, and a laptop on the go). The Per-
sonalRAID system provides the illusion of a single name
space, and it also ensures data reliability.

our prototype PersonalRAID implementation. Sec-
tion 5 details the experimental results. Section 6
compares PersonalRAID to a number of related sys-
tems. Section 7 concludes.

2 Functionalities

The PersonalRAID system manages a number of
disconnected storage devices where the mobile user
desires a single name space on all of them. The
mobile VA device is instrumental in bringing this
about. It is generally not a good idea to rely ex-
clusively on the mobile storage device alone due to
its capacity, performance, and reliability limitations;
instead, the device needs to be an integral part of a
PersonalRAID system.
The VA accompanies the user wherever she goes

(Figure 2). With current technology, a few giga-
bytes can be packaged in the form factor of a credit
card (such as the Kingston 5 GB DataPak PC Card
Type II Hard Drive) or a wrist watch (such as the
IBM 1 GB Microdrive). The VA can communicate
with a host computer via various forms of connec-
tivity (such as PCMCIA, USB, or Bluetooth). As
long as the VA is present, the user “sees” her up-
to-date large home directory regardless where she is
and which computer she is using. The user never
needs to perform manual hoarding or manual prop-
agation of data; and the loss or theft of any single
device does not result in data loss. PersonalRAID
mainly targets personal usage scenarios. (We ad-

(a) Record (b) Disconnect (c) Connect (d) Read (e) Replay

Office

Data
Write A

A A

Office

Metadata
Flush

M

Home

M

Metadata
Read

Home

Data
Read B

Data
Read A

AB

Home

AB A

Move Data A

Figure 3: PersonalRAID operations. The roles of the home and office computer disks are reversed as the user creates
new data at home, which must be propagated to the office.

dress concurrent updates in Section 3.8.1.)

Figure 3 depicts in greater detail the Personal-
RAID operations that synchronize the contents of
several host computer disks. (a) In this example,
when in the office, the VA passively observes the
I/Os performed to the office computer disk and in-
crementally records the newly written data. The of-
fice computer disk is called the source of this data.
(b) When the user is about to leave the office and dis-
connects the VA, the system flushes some metadata
so that an inventory of the VA’s contents is placed
on it. (c) The user then takes the VA home and
connects the device to her home computer. The sys-
tem reads the metadata, and file system operations
can occur immediately following connection. (d) Af-
ter connection, the system reads from either the VA
or the home computer disk to satisfy user requests.
We call the I/O events that have occured between
a pair of connection and disconnection events a ses-
sion. (e) Possibly in the background, PersonalRAID
synchronizes the contents of the disks by replaying
some of the updates, which were recorded on the VA
earlier in the office, to the home computer disk. The
home computer disk is called the destination. Only
after the latest updates are reflected on all the host
disks do we remove the copy of the data from VA.
(This invariant can be a problem if some hosts in
the system are only infrequently visited by the user,
and the VA device is not large enough to hold all the
unpropagated data.) Note that it is not necessary
to replay all the new data to a destination device
in a single session—the user may choose to discon-
nect from the home computer at any time. As the
user creates new data at home and the VA records it
for later replaying to the office disk, the roles of the
two end hosts are reversed: the home disk becomes
the source and the office disk becomes the destina-
tion. Note that we are maintaining an invariant:
a copy of any data resides on at least two devices.

This invariant allows the system to recover from any
single-device loss.
Our current implementation requires the VA de-

vice to be present when the file system is being
accessed; this is consistent with the most common
single-user case that PersonalRAID targets. We do
not currently handle updates on a host that is dis-
connected from the VA. Such updates can be po-
tentially conflicting. In Section 3.8.1, we discuss
ways in which the current system could be extended
to address these limitations. Another limitation is
that the incorporation of a new host into the sys-
tem requires a heavy-weight recovery operation, as
discussed in Section 3.6.
For simplicity, our current system addresses only

disconnected computers. We are researching exten-
sions of the system that can exploit weak or inter-
mittent network connectivity when it is present. We
expect the mobile storage device and the weak con-
nectivity to complement each other in such situa-
tions.

3 Design

The design of the PersonalRAID should satisfy
the following requirements:
• Recording should not impose excessive overhead
that may interfere with normal I/O operations.

• During disconnection, the user should not be
forced to wait for long before the VA can be safely
removed.

• During connection, the user should not be forced
to wait for long before she is allowed to perform
I/O operations.

• Replaying should not impose excessive overhead
that may interfere with normal I/O operations.

• Replaying should proceed quickly so that the
disk space on the VA can be quickly freed up
for future I/Os.

3.1 Naive Design Alternatives
A simple solution is the following. At the end of

the work day in the office, for example, the system
copies all the content that was updated during the
day to the mobile disk. After the user reaches home,
the system copies this content to the home computer
disk. While relatively simple to implement, this ap-
proach has some serious disadvantages: before leav-
ing the office, the user is forced to wait for the en-
tire set of newly modified data to be copied from
the source to the mobile device; and after reaching
home, the user must wait for the entire mobile de-
vice content to be copied to the destination before
she is allowed to access the file system. With mobile
storage devices that can store gigabytes of data, and
with potentially lengthy intervals spent at one com-
puter before moving onto another, the latency may
become intolerable.
One possible improvement is to incrementally

copy newly generated data from the source disk to
the mobile disk in the background instead of allow-
ing the new data to accumulate. This improves the
disconnection time, but it does not address the long
connection latency–the user still must wait for the
entire propagation to complete before she can pro-
ceed to normal I/O activities.
To address these disadvantages, one realizes that

the PersonalRAID needs to be a file system or stor-
age system solution which can transparently decide
which device to access for a particular piece of data:
this is necessary, for example, if the user desires to
access the data on the mobile device after connection
but before it is propagated to the destination device.
With this requirement in mind, let us consider a sec-
ond alternative: during recording, the system mir-
rors a portion of the source device Unix File System
(UFS) on the mobile device. After connection, while
background replaying occurs, the user may transpar-
ently access the mirrored portion of the UFS on the
mobile device.
While this second design alternative may improve

the disconnection and connection latency, the choice
of mirroring a portion of the UFS on the mobile de-
vice may not be a wise decision for best recording
and replaying performance. First, during recording,
UFS updates may incur a large number of small syn-
chronous disk writes. The problem is made worse
when the mobile storage devices typically do not
possess the best latency characteristics so it is dif-
ficult to mask the extra latency by overlapping the
I/Os to different devices. This situation is especially
unfortunate when one realizes that the synchronous
mirroring on the mobile device is unnecessary–data
is already made persistent on the source device.

Second, replaying from a partial UFS mirror on
the mobile device to the destination device UFS is
also inefficient, because unnecessary disk head move-
ment occurs. Slow replaying, in turn, has several
negative repercussions: (1) slow replaying interferes
with normal user I/O activity; (2) slow replaying
may cause the mobile device to fill up; and (3) slow
replaying prevents the user from taking advantage
of the potentially faster destination device by forc-
ing the user to continue to use the slower mobile
device for reads.

3.2 Log-Structured Organization

The analysis of the naive design alternatives
shows that a good PersonalRAID design should
have at least these two properties: (1) the mo-
bile device should be an integral part of a storage
or file system so that the user can transparently
read/write the device without incurring long connec-
tion/disconnection latency; (2) the transfer of data
onto/off the mobile device should take place in a
fashion that avoids incurring the intrinsic latency
bottleneck of disks.
One possible design that naturally satisfies these

requirements is to have some variant of a log-
structured file system (LFS) [12] on both the VA and
the host disks. During recording, data is buffered in
large memory segments; these memory buffers pre-
vent overwritten data from ever reaching the disks
and large segment-sized writes are efficient. Discon-
nection is analogous to a graceful LFS shutdown and
connection is analogous to an LFS recovery, both
of which mainly involve metadata operations that
are relatively efficient. Note that disconnection must
also flush any dirty data segments. Fast replaying is
possible because the system transfers data at large
segment-sized granularity that fully utilizes the VA
and host disk bandwidth. Furthermore, during re-
playing, as the system reads live data from the VA
and writes them to the destination device, large ex-
tents of empty segments are generated on both the
VA and the destination device; therefore, replaying
and segment cleaning in effect become an integral
one.

3.3 PersonalRAID Data Structures

While it is possible to build a PersonalRAID sys-
tem at the file system level by modifying an LFS to
adapt to multiple storage devices, we have elected to
construct the PersonalRAID by extending the design
of a Log-Structured Logical Disk (LLD) [1]. A logical
disk behaves just like a normal disk from the point
of view of a file system: it allows the file system to
read and write logical disk addresses. A particular

PA physical device address.

LA logical (virtual) device address.

t time stamp (global counter).

bitmap one bit (bi) per host, bi=1 if host i needs propagation.

state

 s0

 s1

 s2

 s3

4 bits of state information for a block.

1 iff the block needed to be propagated to the current host at
the beginning of the current session.

1 iff the block needed to be propagated to any of the other hosts
at the beginning of the current session.

1 iff the block has been propagated from the VA to the current
host in the current session.

1 iff the block has been overwritten in the current session.

LAPA t LAPA t

PALA PALA bitmap

PALA PALA state

Segment Summary

Checkpoint

Map

Local Disk Virtual-A

Disk

Disk

Memory

Location

Figure 4: Details of the main PersonalRAID data structures.

implementer of a logical disk, however, can choose
to map these logical addresses to physical addresses
in a way that she sees fit. A log-structured logical
disk maps logical addresses that are written together
to consecutive physical addresses, effectively accom-
plishing the goals of an LFS. An LLD can support
existing file systems with little or no modification
and it is typically easier to implement an LLD than
an LFS. The PersonalRAID system makes a single
consistent logical disk available on all the participat-
ing hosts, despite the lack of any network connection
between any of them.
The data structures on each device of a Person-

alRAID are not unlike those of a conventional LLD.
In a conventional LLD, the disk is structured as a
segmented log. Data blocks are appended to the
log as the LLD receives write requests from the file
system. Each write request is assigned a unique
time stamp from a monotonically-increasing global
counter. Each segment contains a segment sum-
mary, which has the logical address and the time
stamp of each data block in the segment. The seg-
ment summary aids crash recovery of the in-memory
logical-to-physical (L-to-P) address mapping. The
L-to-P mapping is checkpointed to the disk during
graceful shutdown.
Figure 4 shows in greater detail the three main

PersonalRAID data structures: the segment sum-
mary, the checkpoint, and the in-memory map. For
each of the three data structures, there is one version

for the host local disk and there is another version
for the VA. The version for the local disk is essen-
tially the same as that of a conventional LLD. The
VA version is augmented with some additional in-
formation.
Each entry of the L-to-P mapping in the VA

checkpoint is augmented with a bitmap: one bit (bi)
per host, and bi = 1 if the block for this logical
address needs to be propagated to host i. In a Per-
sonalRAID system, the contents of the VA device
are defined to be the set of data blocks that still
need to be propagated to some host. Thus, a block
is evicted from the VA device when it has reached
each host in the system. In other words, the L-to-
P entry for a particular logical address is marked
null when the corresponding bitmap contains 0 in
all positions. The VA checkpoint is also home to a
global counter. All write operations in the system
are assigned a unique time stamp from this counter.
Each entry of the VA in-memory map is aug-

mented with a state field that consists of four bits
(s0−3): this field is a summary of what needed to
happen to this block at the beginning of the current
session in terms of propagation (s0−1), and what has
happened to this block on this host in the current
session in terms of replaying and recording (s2−3).
When stored as a table, each L-to-P map con-

sumes 4 bytes per logical address. Thus, assuming
a block size of 4 KB, the L-to-P map needs 1 MB
for each GB of logical address space. The total size

of the bitmap fields in the VA checkpoint is MN
bits, where N is the number of logical addresses and
M is the number of hosts in the system. Thus, the
bitmaps need 32KB of VA disk space per host for
each GB of logical address space. The state fields
in the in-memory data structure for the VA need
128KB for each GB of logical address space. Ob-
serve, however, that at any time, most L-to-P en-
tries and the state and the bitmap fields for the VA
will be null, since the size of the VA will typically
be much smaller than the size of the logical address
space. Thus, more compact representations of the
VA data structures are possible.
We close this section by making the following ob-

servation about the PersonalRAID data structure
design. Each device in a PersonalRAID is self-
contained in that the physical addresses within the
data structures for this device all point to locations
within this device. If a logical data block is not
found on this device, the pointer to it in the L-to-P
mapping of this device is null; in this case, a corre-
sponding pointer on a device that does contain the
block points to a true location of the block. The
union of all the valid pointers on all devices consti-
tutes the whole logical-to-physical map.

3.4 PersonalRAID Operations

In this section, we describe the various Personal-
RAID operations in detail. Figure 3 also illustrates
how these operations interact with the underlying
log on each device.

3.4.1 Recording

During recording (a), the system appends a newly
created logical block to two logs: one on the source
device and the other on the VA. The logical address
of the newly created data is recorded in each of the
two segment summaries along with the latest times-
tamp. The in-memory map of each device is also
updated to reflect the latest locations of the data
block. In addition, we set s3 = 1 in the state field of
the VA in-memory map to mark the creation event
during this session.

3.4.2 Disconnection and Crash Recovery

During disconnection (b), first the file system on the
PersonalRAID logical disk is unmounted. Unmount-
ing flushes all the dirty file-system buffers to the Per-
sonalRAID logical disk, and it also indicates to the
user that the file system on the local host is unusable
when the VA is not connected to it. Then, a grace-
ful shutdown is performed on both the local disk and

the VA. For the local disk, we simply write the in-
memory map to its checkpoint region. (If the local
host is not powering down after disconnection, then
the system can choose to keep the map in memory—
this optimization can reduce the connection time for
the next session on this host. See Section 3.4.3.)
The VA checkpoint region contains the VA L-to-P

map and the bitmap fields. Thus, for the VA, in ad-
dition to flushing the map, we must read the bitmap
fields of the old checkpoint into memory, compute
the new bitmap fields using the old bitmap fields
and the state fields of the in-memory map, and write
a new checkpoint back to the VA. If s3 = 1 (writ-
ten block), we set the bitmap to reflect the need
of propagating this block to all other hosts in the
system. Otherwise, if s2 = 1 (propagated block),
we clear the corresponding bit for this host in the
bitmap but retain the values of the remaining bits.
We also store the latest timestamp in the VA check-
point; this timestamp marks the end of the current
session and the beginning of the next session. To
avoid corrupting the old checkpoint in case a crash
occurs in the middle of a checkpoint operation, we
maintain two checkpoint regions for each device and
alternate between them.
A crash is a special case of disconnection. In a

conventional LLD, the goal of crash recovery is to
reconcile the contents of the segment summaries and
the checkpoint to make them consistent with each
other. In the PersonalRAID system, however, the
crash recovery process also needs to make the local
disk and the VA mutually consistent and to restore
the PersonalRAID invariants. Note that the Person-
alRAID system requires that the recovery process be
completed at the crash site before the user moves to
another host.
The first PersonalRAID invariant to restore is

that all data blocks written in the past (unfinished)
session must be present on both the local disk and
the VA disk. Because the flushes to the two disks
are not synchronized, one of them might have fallen
behind the other in terms of receiving the most re-
cent writes. Thus, the crash recovery process might
need to propagate data blocks from one disk to the
other.
The other PersonalRAID invariant to restore is

that the bitmaps in the VA checkpoint must cor-
rectly reflect the state of the system in terms of
propagation of writes. Blocks written or propagated
during the past session might have made the old
bitmaps inconsistent. Such blocks can be identified
by comparing the time stamps in the segment sum-
maries with the time stamp in the old VA check-
point. Having identified the written and propagated

blocks, bitmaps are updated in the VA checkpoint
as in the case of a normal disconnection described
above. If all bits in a bitmap are clear, we must have
performed all the necessary propagations and we can
safely discard this block from the VA by nullifying
the logical-to-physical mapping for this block on the
VA. We also store the latest timestamp found during
the segment summary scan in the VA checkpoint to
mark the end of this session.

3.4.3 Connection and Reading

During connection (c), the system needs to initialize
the in-memory maps by reading the checkpoints. If
the host that the VA is connecting to is powering
up, the system needs to initialize the local disk in-
memory map by reading the local disk checkpoint,
just as LLD does. In a similar fashion, the sys-
tem reads the VA checkpoint to initialize the VA in-
memory map. The difference between the two maps
is that the system also needs to calculate the state
field of the in-memory map for the VA: s0 and s1 are
set based on the bitmap stored in the checkpoint (s0
is set equal to the current host’s bit and s1 is set
to the inclusive OR of all other bits), while s2 and
s3 are cleared. And if s0 = 1, the system concludes
that the local disk contains an obsolete copy, and
nullifies the logical-to-physical mapping in the local
disk in-memory map. Finally, the system also reads
the disconnection timestamp in the VA checkpoint
to initialize the current timestamp.
As soon as connection completes, the system is

ready to accept I/O requests. To service a read
request (d), the PersonalRAID looks up the in-
memory maps for valid logical-to-physical mappings
to decide which device holds the most recent copy
of a logical block. In the event that a fresh copy
resides on multiple devices, the system is likely to
favor the local disk, which is typically faster than
the VA, although load-balancing opportunities ex-
ist. To service a write request, the PersonalRAID
records the new block by appending it to both logs
as described earlier.

3.4.4 Replaying

Possibly in the background, the system performs re-
playing (e). A great deal of synergy exists between
PersonalRAID and log-structured storage as replay-
ing is integrated with segment cleaning on the VA
device. The system checks the s0 bit in the VA in-
memory map to identify the live data on the VA that
is yet to be propagated to the destination device. It
then reads live data from the VA and appends it to
the log on the destination device. The timestamp

of the newly propagated block inherits that of the
VA block, which the system reads from the corre-
sponding VA segment summary. The s2 bit is set in
the state field. Next, the system checks s1 to deter-
mine whether this block needs to be propagated to
other hosts in the system. If s1 = 0, the data block
must have been propagated to all hosts in the system
and the block can be safely removed from the VA.
If we attempt to populate a segment with blocks of
identical propagation bitmaps, then we are likely to
harvest free segments as their blocks are freed simul-
taneously. On the other hand, if s1 = 1, we must
retain the block on the VA for further propagation
to other hosts in the system and we have two op-
tions: we can either leave the blocks in place on the
VA in the hope that they may be deleted in the fu-
ture to render their cleaning unnecessary, or append
them to the end of the VA log since we have already
incurred the cost of reading them into memory. In
the latter case, we have again accomplished segment
cleaning on the VA as a byproduct of replaying.
In a conventional LLD, the segment cleaning al-

gorithms mainly aim to maximize the number of free
segments generated per unit of cleaning I/O. This
is typically achieved by cleaning segments that are
relatively cold and have low utilization [12]. (Re-
call that a piece of data is said to be cold if it is
unlikely to be overwritten in the near future, and
utilization of a segment is a measure of the amount
of live data in it.) In a PersonalRAID system, how-
ever, segment cleaning on the VA device becomes
more complicated due to its integration with replay-
ing. Instead of (or in addition to) coldness and uti-
lization of segments, a good cleaning strategy might
need to take into account the state of propagation
of blocks. For example, at any time, a live block on
the VA might need to be propagated (1) to the lo-
cal host, but not to any remote host, or (2) to some
remote host, but not to the local host, or (3) to the
local host as well as some remote host. A cleaning
strategy might prefer to clean one type of blocks be-
fore others depending on how aggressively it wants
to replay blocks or generate free segments.
In this section, we examine the log operations

during the recording, disconnection, connection,
reading, and replaying phases of the PersonalRAID.
We note two features of the PersonalRAID design.
One feature is that the map information on each de-
vice is self-contained: all the valid pointers in a de-
vice point to locations within the same device. This
feature allows data movement within one device or
across a subset of the partially connected devices to
be performed independently of other devices. The
second feature of the PersonalRAID design is the

potential for exploiting I/O parallelism: the record-
ing, reading, and replaying phases can overlap I/Os
to the VA and local disks to mask some of the I/O
latency and balance load.

3.5 Recovering from Device Losses
We first discuss how to recover from the loss of a

host computer disk. Then we discuss how to recover
from the loss of the VA device itself.

3.5.1 Recovering from Host Disk Loss

This scenario is the simpler case to handle. We take
the VA to a surviving host. The union of the con-
tents of the local disk on this host and the VA gives
the entire content of the PersonalRAID. First, we
completely synchronize the local disk and the VA by
replaying all those blocks whose latest versions are
present on the VA but not on the local disk. Thus,
at the end of this phase, the bit for this host in all
the bitmaps is 0. Then, we create a physical mirror
of the local disk onto a new disk (using a Unix utility
like dd, for example). The new disk is brought to the
accident site to replace the lost disk. The bitmaps
on the VA are updated to reflect the fact that the
restored disk now has all the PersonalRAID data.

3.5.2 Recovering from VA Device Loss

The more complex case is when the VA device itself
is lost. There are two pieces to be reconstructed.
The first piece is the metadata, which consists of the
bitmaps and the current value of the global counter.
The other is the set of actual data blocks that were
lost with the VA device. Recall that the contents
of the VA are defined to be the set of data blocks
that must be propagated to some host in the system.
Thus, to reconstruct the data part, we may need to
visit all the hosts in the system.
A simple recovery method is this. We visit all

the hosts in the system twice. The goal of the first
tour is to construct the metadata part by scanning
the segment summaries on each host and comparing
time stamps. In the second tour, we simply visit
each host to copy the required data blocks onto a
new VA device. Note that this tour does not need to
scan the segment summaries on the local disks—the
L-to-P mapping is sufficient to locate the required
data.
An unpleasant aspect of this reconstruction ap-

proach is that it requires one to visit each host twice.
To eliminate the first tour, we can make a copy of the
bitmaps and the global counter on the local disk dur-
ing the disconnection process. When the VA is lost,
the user must retrieve the bitmaps and the value of

the global counter from the host where she most re-
cently disconnected. The bitmaps allow the system
to identify the hosts on which the latest copy of a
VA logical block is stored. The user now needs to
complete only one tour to reconstruct the VA con-
tent. The price one pays for this simpler approach
is the extra time and space spent during disconnec-
tion to write the bitmaps to the local disk, although
it is likely that one should be able to overlap the
bitmap flush time on the local disk with the slower
VA checkpoint time, and the space consumed by the
bitmaps is insignificant.
This VA reconstruction approach even works if

one encounters a combination of a crash and the
loss of the VA. In this unfortunate scenario, the user
retrieves the old bitmaps from the computer that
she visited last and then comes back to the crashed
computer to complete the crash recovery process as
described in Section 3.4.2. At the end of this crash
recovery process, the system has recovered the lost
bitmaps and she can start the reconstruction tour
to reconstruct the lost VA data. To avoid having to
go back to the computer that she visited last in this
scenario, we can make a copy of the VA checkpoint
bitmaps on the local disk during the connection pro-
cess (as well as the disconnection process).
The VA reconstruction processes described so far

require the user to complete at least one tour of all
the hosts. To further reduce the number of hosts
that one must visit after a VA loss, one can periodi-
cally replay some blocks to all the hosts to eliminate
these blocks from the VA or periodically replay all
VA content to some host. The latter technique is
effectively same as making a copy of the VA content
on that host.

3.6 Reconfiguration

Reconfiguration of a PersonalRAID in the form
of removing or adding hosts is relatively simple. To
remove a host from the system, all the system has to
do is to reformat the VA checkpoint to remove a bit
from each bitmap. Recall that the bitmaps record
which hosts in the system need to receive propaga-
tions. The checkpoint reformat allows the system
to discard data from the VA, no longer propagat-
ing it to the removed host. To further simplify this
process, the system can simply record at the begin-
ning of the checkpoint which bits in the bitmaps are
still considered active; so the non-active bits are not
considered in the algorithm.
Adding a host to the PersonalRAID is essentially

the same as recovering from the loss of a host disk.
The only difference is the reformatting of the VA
checkpoint to add a bit to each bitmap. Again, to

further simplify the process, the system can simply
activate a previously allocated bit. This bit is set
to 0 in each bitmap since at the end of recovery
(see Section 3.5.1), the recovered host has all the
PersonalRAID data.

3.7 Virtual VAs

So far in our discussion, we seem to have assumed
that the Virtual-A has to be a physical mobile stor-
age device such as the IBM Microdrive. This as-
sumption is not necessary: the Virtual-A can in fact
be backed by a file, a local disk partition, or even a
network connection. We call such a virtual backing
device a Virtual Virtual-A (or a VVA or a V2A).
One possible use for a local disk-based VVA is

to use it instead of a mobile storage device to per-
form recording. Because mobile storage devices do
not necessarily have the best performance character-
istics, recording to a VVA can be more efficient. Of
course, to transport the data, we still must copy the
contents of a VVA to a mobile device-based VA (and
sometimes, vice versa). One possible solution for
avoiding the long copying latency is to allow asyn-
chronous copying to the mobile device to occur in
the background. Although the log-structured design
of the VA organization allows the PersonalRAID to
buffer a large amount of data in memory and delete
overwritten data before it reaches the device, the
amount of buffering is still limited by the available
memory. A VVA that asynchronously copies to a
VA essentially allows unlimited buffering. Another
use of a VVA is to make a copy of the VA for the
purpose of reconstructing a lost VA (as described in
Section 3.5.2).
To efficiently implement a local disk-backedVVA,

one in fact does not need to physically and separately
store the data blocks that can already be found on
the local disk of this host: the mapping information
is all that is needed. Because we do not have to
physically store separate copies for a VVA’s data in
this case, we call this a Virtual VVA (or a V3A).

3.8 Limitations and Extensions

In this section, we describe a number of limita-
tions of the PersonalRAID system described so far.
Some of these are the topics of our continued re-
search and we discuss possible approaches of ad-
dressing them.

3.8.1 Concurrent Updates

To simplify the discussion so far, we have made a
conscious design decision of not addressing concur-
rent updates. We believe that this is an acceptable

choice for the use cases that we are targeting: Per-
sonalRAID, being “personal”, is designed for a single
user to control a number of distributed and discon-
nected personal storage devices; these storage de-
vices do not receive updates concurrently simply be-
cause we do not allow the user to be at multiple sites
simultaneously. There is, however, nothing intrinsic
in the current PersonalRAID design that prohibits
us from addressing concurrent updates.
Indeed, there are legitimate personal use cases

where concurrent updates arise naturally. For ex-
ample, a networked office computer can continue to
receive email after the user has disconnected the VA
and has gone on vacation, taking a copy of the mail
file with her. As long as the user does not modify the
same mail file during the trip, the current Personal-
RAID design can be trivially extended to accommo-
date such concurrent but non-conflicting updates.
After the user disconnects the VA, as the office

computer receives new updates, it records the up-
dates in a V3A on the local disk (as described in
Section 3.7). When the user returns and connects
the mobile VA device to the office computer, as long
as there is no conflicting update, the system can
merge the checkpoint of the VA with that of the
V3A to arrive at a consistent VA image as a result
of propagating the V3A updates to the VA. After
the merging, the system operates as described pre-
viously.
If there are conflicting updates, application or

user-level intervention is necessary. In this case,
a more sophisticated extension to the current Per-
sonalRAID design is necessary. The logical disk
approach upon which the PersonalRAID design is
based becomes a convenient and powerful vehicle to
support file system versioning. At VA disconnection
time, the content of the local disk L-to-P map is
“frozen” to represent a version (V0). As updates are
recorded in the local V3A, none of the old blocks in
V0 are overwritten. The union of V0 and the V3A
represents a new version V1. After the user returns
and connects her VA device, which may contain con-
flicting updates, the union of V0 and the VA repre-
sents yet another version V2. The user or an ap-
plication must resolve conflicts to arrive at a “con-
sistent” new version V3. Upon conflict resolution,
the old versions V0, V1, and V2 can be freed and a
consistent VA image again emerges.

3.8.2 Mobile Storage Limitations

Mobile storage technologies are likely to lag behind
conventional ones in terms of performance and ca-
pacity. We believe that the performance disadvan-

tages are addressed by the log-structured design of
the PersonalRAID and the judicious use of the host
disk in the forms such as the V3A described in Sec-
tion 3.7. Currently, we do not address the capacity
constraint. We are currently researching ways that
a weak network connection (when one is present)
may complement the mobile storage device to ad-
dress this limitation.

3.8.3 Limitations of the Log-Structured Or-
ganization

The potential disadvantages of the log-structured or-
ganization are the possible destruction of read lo-
cality and the cost of segment cleaning (or disk
garbage collection) [13, 14]. PersonalRAID mainly
targets personal computing workloads, which are of-
ten bursty and leave ample idle time for cleaning.
The cleaning overhead can be further reduced by us-
ing techniques like freeblock scheduling [7], and by
buying bigger disks and keeping the disk utilization
low.
The base LLD design that we have borrowed

has several potential disadvantages [1]. Keeping the
entire logical-to-physical map in memory, the base
LLD design consumes a large amount of memory and
incurs some latency when reading this map from disk
into memory at startup time. It is, however, possible
to cache only a portion of the map in memory and
demand it in gradually. We have not implemented
this possible optimization.

4 Implementation

In this section, we describe a Linux Personal-
RAID implementation. As explained in Section 3,
our system implements all the PersonalRAID func-
tionalities at the logical disk level. The system con-
sists of two main components: the PR Driver (PRD)
and the PR Server (PRS) (shown in Figure 5). The
PRD is a pseudo-block device driver that exports the
interface of a disk. Upon receiving I/O requests, the
PRD forwards them to the PRS via upcalls. The
PRS is a user-space process that implements the
LLD abstraction; it manages a partition on the local
disk and the VA device in a log-structured manner
as described in Section 3.
Most of the complexity in our system is con-

centrated in the PRS. Despite the upcall overhead,
which is purely an implementation artifact, we chose
this design for ease of programming, debugging and
portability. Unfortunately, this decision also leads
to some deadlock possibilities. A user process can
cause the buffer cache to flush as a side effect of re-

PR Driver

PR ServerUserUserUsers

Virtual
Device

Local
Disk

Virtual-A

K
er

ne
lBuffer Cache

UserUserFile Systems

Figure 5: The PR Driver (PRD) and the PR Server
(PRS) are the two main components of the PersonalRAID
prototype. The PRD is implemented as a dynamically
Loadable kernel module, whereas the PRS is a user-space
process.

questing system services (like dynamic memory al-
location). The user process blocks till the flush is
completed. If the PRS, which is just another user
process, causes a flush to the PRD, the system en-
ters a deadlock with the PRD waiting for the PRS
to service the flush request. To prevent such dead-
locks, our PRS is designed not to allocate memory
dynamically during its life time. All memory used is
allocated and locked at start-up time. Also, the PRS
does raw I/O using the Linux /dev/raw/rawN in-
terface, bypassing the buffer cache. Two additional
changes are made in the kernel path used by the
PRS to ensure that it never causes a PRD flush.
In addition to the in-memory map described in

Section 3 (see Figure 4), the PRS maintains sev-
eral main-memory segments for both the local disk
and the VA device. These segments accumulate new
block writes, just like the LLD system. Our imple-
mentation maintains more than one main-memory
segment for each of the two devices. This feature
allows us to decouple the amount of write-behind
buffering from the segment size, which may need to
be based on other considerations such as segment-
cleaning performance.
Segment cleaning is begun when the number of

clean segments falls below a threshold. We use twice
the number of main-memory segments as the thresh-
old. Cleaning is invoked, if necessary, after flushes
and stops once the threshold is reached. For sim-
plicity, on the local device, like the LLD system, it
chooses the segment with the minimum number of
live blocks to clean. Live blocks are read into main
memory and are copied with their old timestamps to
the main-memory segments. Note that we mix the

new block writes with the old blocks.
Segment cleaning for the VA device is a lit-

tle more complex since replaying is integrated with
cleaning. Our current cleaning policy adopts a sim-
ple heuristic to strike a balance between two goals:
quickly generating empty segments on the VA and
quickly propagating data. The cleaner gives higher
preference to segments that have data blocks that
need to be propagated. Among all such segments, a
segment with the minimum number of such blocks is
chosen. Among segments with no blocks that need
to be propagated, we give preference to segments
with fewer live blocks. To clean a VA device seg-
ment, live blocks are read into memory and if neces-
sary, propagated to local disk. If the block still needs
to be propagated to some other device, it is written
back to the VA; otherwise, it is discarded. There
is one subtlety in this algorithm. If a VA segment,
while being cleaned, contributes new blocks to some
main-memory segments of the local disk, then this
VA segment cannot be reused until all those local
disk segments are safely on the local disk. Other-
wise, a crash may lead to a situation where the only
copy of a data block is on a remote host, and re-
covering from such a crash would require visiting
that remote host. Thus, before marking a set of seg-
ments cleaned in the current cleaning phase as free,
we check for this condition and possibly flush the
main-memory segments of the local disk.
Currently, the PRS performs request satisfaction,

segment flushing, and cleaning sequentially. It is
possible that performance can be improved by using
multiple threads for some or each of these different
tasks. The PRS is about 4000 lines of C code, includ-
ing a substantial amount of debugging and testing
code. The PRD is implemented as a dynamically
loadable kernel module. It is about 700 lines of C
code. All of the algorithms described above have
been implemented with the exception of crash recov-
ery, recovery from device loss, and reconfiguration.

5 Experimental Results

In this section, we evaluate the performance of
the prototype PersonalRAID system to demonstrate
two conclusions: (1) PersonalRAID can achieve the
transparency and reliability goals without imposing
a significant performance penalty on a mobile stor-
age user, and (2) the log-structured organization of
the PersonalRAID is a sound design choice.

5.1 Experimental Platform

Our experimental setup consists of two laptop
end hosts (A & B) with an IBM 1GB Microdrive

Model Dell Inspiron 4000
Notebook

Processor Pentium III, 800 MHz
Memory 256 MB
Operating System Red Hat Linux 6.2

Kernel 2.2.18

Table 1: Host configuration.

Local Disk VA
Maker IBM IBM
Model Travelstar 1 GB

20GN Microdrive
Interface ATA-4 PCMCIA
Capacity (GB) 10 1
RPM 4200 3600
Bandwidth (MB/s) 16.9 1.5
Avg. Latency (ms) 7.1 20.3

Table 2: Characteristics of the local disks and the VA used
in the PersonalRAID prototype. The published sustained
data rate of the Microdrive is 2.6 MB/s; while our best
effort micro-benchmark on the drive yields 1.5 MB/s.

acting as the VA device. Table 1 shows the config-
uration of the laptops and Table 2 gives the charac-
teristics of the laptops’ internal local disks and the
Microdrive. Note that the Microdrive’s bandwidth is
more than an order of magnitude worse than that of
the internal disk. A challenge to the PersonalRAID
system is to shield the user from this performance
gap.
Table 3 shows the configuration parameters of the

PR Server. The user “sees” a 2 GB PersonalRAID
logical disk, which is larger than the VA capacity.
The segment sizes and the numbers of outstand-
ing segments are chosen so that the write-behind
buffer of the local partition is smaller than that of
the VA: the former is kept small so that the system
limits the amount of data loss in case of a crash,
while the latter is kept large to allow overwritten
data to be deleted before it reaches the Microdrive
and mask the higher latency. We must, however,
remark that in our experiments, the large size of
the VA buffers did not make a significant difference.
The reason for this is that a Linux ext2 file system
internally uses large buffers to absorb most of the
overwrites. Thus, very few overwrites occur in the
PersonalRAID buffers, which are at the logical disk
level below the file system. In a system where the
file system does less buffering, the impact of having
large VA buffers might be significant.

5.2 Benchmarks

We report results for two benchmarks. The first
is an enhanced version of the “Modified Andrew

Local Partition VA
Block Size (KB) 4 4
Seg. Size (MB) 0.5 1
Outstanding Segs 2 8
Size (GB) 3 1

Table 3: Configuration parameters of our 2GB Personal-
RAID server.

Benchmark” [4, 9], which we call “MMAB”. (We
modified the benchmark because the 1990 bench-
mark does not generate much I/O activity by to-
day’s standards.) MMAB has four phases. The first
phase creates a directory tree of 50,000 directories,
in which every non-leaf directory (with the exception
of one) has ten subdirectories. The second phase cre-
ates one large file and many small files. The large
file created has a size of 256 MB. Each of the small
files is 4 KB. The benchmark creates five small files
in each of the directories in the first five levels of the
directory tree, resulting in a total of about 55,000
small files. The third phase performs file-attribute
operations. During this phase, the benchmark first
performs a recursive touch on all the directories and
files in the directory tree; it then computes disk us-
age of the directory tree by invoking du. The fourth
and final phase reads files. It first performs a grep on
each file; it then reads all the files again by perform-
ing a wc on each file. We run the MMAB benchmark
on laptop A and evaluate various options of gaining
access to the resulting files on laptop B without the
benefit of a network.
The second benchmark is a software development

workload. We examine the cost of installing and
compiling the Mozilla source code as a user moves
between the two laptops. The benchmark has two
phases. The first phase creates a development source
tree from a compressed archive file (a .tar.gz file)
stored on a local disk. The source tree consumes
about 405 MB of total disk space. We refer to this
phase as “MOZ1” in the subsequent sections. Dur-
ing the second phase, we compile the “layout” mod-
ule within the Mozilla source tree, generating an ad-
ditional 80 MB of data. We call this phase “MOZ2”.
To run this benchmark, we start with MOZ1 on lap-
top A. We then transport the data to the discon-
nected laptop B to continue with MOZ2.

5.3 Recording Performance

Table 4 details the recording performance of the
MMAB benchmark. “UFS-Local” is a Linux “ext2”
file system created directly on the local disk parti-
tion. “UFS-Upcalls” is the same file system imple-
mented with kernel upcalls into a user-level server.
“LLD-Local” uses the same kernel upcall and user-

level server mechanisms but it replaces the UFS with
a log-structured logical disk organization. The re-
sults of these experiments are used to establish the
base-line performance, to factor out the cost of us-
ing a user-level server, and to quantify the benefit
of using an LLD for accessing the local disk. “UFS-
MD” is an ext2 file system created directly on the
Microdrive. “PR-VA” is an ext2 file system created
on the logical disk exported by the PersonalRAID
system where the Microdrive is used as the VA de-
vice. “PR-VVA” is similar to PR-VA except that it
uses a partition on the local disk as the VA device.
The PR-VVA performance is an indication of how
well the PersonalRAID might perform if the VA de-
vice has much better performance than that of the
Microdrive.
The Linux ext2 file system performs both meta-

data and data writes asynchronously to the buffer
cache. The large memory filters out overwritten data
before it reaches the disks and allows the surviving
write requests to be intelligently scheduled. As a re-
sult, the additional benefit that the log-structured
PersonalRAID derives from asynchronous writes is
smaller than one might expect. During the MMAB
and MOZ experiments, the segment cleaners in the
PRS did not get invoked. Later in this section, we
describe a separate experiment designed to measure
the overhead of segment cleaning.
The results show that the PR-VA system is suc-

cessful in masking the 10× bandwidth difference be-
tween the local disk and the Microdrive: despite the
fact that the PersonalRAID needs to write to two
devices and that the system incurs the cost of ker-
nel upcalls, the performance of PR-VA is close to or
better than that of UFS-Local in most cases due to
the relatively low overhead of log-structured record-
ing. An exception is the large write (lwrite) per-
formance, a case where the PersonalRAID record-
ing performance is being limited by the Microdrive
bandwidth. The read performance of the PR-VA
is also excellent, since unlike the UFS-MD system
which performs reads from the slower Microdrive,
it satisfies reads from the faster local partition. Fi-
nally, the performance of PR-VVA indicates that the
PersonalRAID system becomes even more attractive
with a faster mobile storage technology.
Table 5 presents the recording performance of

the MOZ benchmark, along with the cumulative to-
tals from MMAB. Recall that MOZ1 is the source-
unpacking phase run on laptop A and MOZ2 is the
compiling phase run on laptop B. The former is more
I/O intensive than the latter and it is much more dif-
ficult to mask the recording overhead during MOZ1
unless the VA device is faster. After we connect the

mkdir (s) lwrite (s) swrite (s) touch (s) du (s) grep (s) wc (s) total (s)
UFS-Local 156 20 398 806 6 142 368 1896
UFS-Upcalls 397 33 675 951 15 220 388 2679
LLD-Local 184 28 229 330 5 66 94 936
UFS-MD 398 320 725 1440 1200 535 880 5498
PR-VA 325 239 484 350 167 85 127 1777
PR-VVA 192 55 263 336 151 75 100 1172

Table 4: Detailed breakdown of recording performance for the MMAB benchmark. mkdir is the directory creation phase.
lwrite creates a large file and swrite creates many small files. touch and du perform attribute operations. The touch
phase reads directories and inodes, and writes inodes. The du phase generates write as well as read traffic because the
recursive visit alters access times that are stored in the inodes. The metadata cache misses are the main contributor of
this phase’s latency. grep and wc read all the files.

MMAB MOZ1 MOZ2 (s)
total (s) (s) post- pre-

replay replay
UFS-Local 1896 75 476 —
UFS-Upcalls 2679 126 481 —
LLD-Local 936 66 464 —
UFS-MD 5498 404 640 —
PR-VA 1777 395 548 558
PR-VVA 1172 102 482 486

Table 5: Recording performance.

VA device to laptop B, we have two options for PR-
VA: we can run MOZ2 immediately after connec-
tion, in which case the system reads data from the
slower Microdrive; or we can run MOZ2 after replay-
ing the entire content of VA to the local partition,
in which case the system reads data from the faster
local disk. The workload being CPU-intensive, there
is little difference between the 2 cases.
The next set of experiments (see Table 6) cap-

ture the effect of invoking the segment cleaner on
recording performance. We repeatedly perform a
series of recompilation steps where each compilation
step is triggered by modifying the file attributes of
a small randomly-chosen subset of source files. We
perform the experiments on two configurations: a 1
GB VA partition and a 550 MB VA partition. The
disk utilization of the first configuration is 50% and
the cleaner is not triggered during compilation. The
disk utilization of the second configuration is 96%
and the cleaner must run to continuously generate
clean segments to accommodate the new data gen-
erated by the compilation. A total of 231 MB of
data is generated during the experiment. The cost
attributed to the cleaner is low.

5.4 Disconnection and Connection Per-
formance

Table 7 and 8 compare the disconnection and con-
nection latencies of several alternatives. To discon-
nect/connect the VA device from/to a host in Per-

Cleaner Cleaner
not invoked (s) invoked (s)

PR-VA 878 928
PR-VVA 713 735

Table 6: Effect of cleaning on recording performance.

MMAB (s) MOZ1 (s) MOZ2 (s)
PR-VA 7.3 7.3 7.3
tar 1225 268 —
hoard — — 62

Table 7: Disconnection performance.

sonalRAID, all it takes is writing/reading the VA
checkpoint. The checkpoint write may be preceded
by the flushing of the remaining memory segments,
which may add a few more seconds. The bench-
marks that we used sync the disk at the end of each
benchmark run so both the checkpoint write and
read times are constants.
We examine two simpler alternatives to Person-

alRAID. One is to use the Unix tar utility to cre-
ate/unpack a Unix archive on the Microdrive at dis-
connection/connection times. tar writes less data
to the Microdrive than PersonalRAID because it
writes only enough information to allow it to recre-
ate the directory structure without physically copy-
ing all the blocks, eliminating fragmentation costs.
Unpacking time is much faster than packing time
because unpacking is benefitting from the asyn-
chronous writes of the Linux ext2 file system. De-
spite these optimizations, the latencies are not tol-
erable.
For MOZ2, tar alone would not have been ade-

quate because we need to identify the files that have
been changed, added, or deleted after compilation
and act on just the changes. For this purpose, we
use a pair of Unix scripts hoard/unhoard. Although
these scripts are admittedly crude due to the liberal
forking of some Unix processes, it is clear from the
data that the resulting latencies of this approach are

MMAB (s) MOZ1 (s) MOZ2 (s)
PR-VA 7.0 7.0 7.0
untar 411 225 —
unhoard — — 67

Table 8: Connection performance.

MMAB (s) MOZ1 (s) MOZ2 (s)
VA→LFS 553 340 56
VA→UFS 988 547 100
VVA→LFS 159 90 17

Table 9: Replaying performance.

unlikely to be satisfactory.
To be fair, we note that the connection times for

the simpler alternatives described above include the
replay time. These times are less than the sum of
connection and replay times for the PersonalRAID
system (see the top rows in Tables 8 and 9), because
the simpler alternatives write less data to the Micro-
drive than PersonalRAID, and write their data as a
large, sequential file. Unlike PersonalRAID, how-
ever, these simpler alternatives do not allow normal
operations to overlap the replay time and thus have
a much greater impact on the user.

5.5 Replaying Performance

After a VA device is connected to a Person-
alRAID host, background propagation (or replay-
ing) starts. Table 9 shows the results of the ex-
periments designed to analyze the impact of the
log-structured organization on the replaying perfor-
mance. “VA→LFS” refers to the PersonalRAID
that replays from a log-structured VA to a log-
structured local partition.
An alternative to this design is to use a UFS-style

update-in-place organization on the local disk parti-
tion, while retaining the log-structured organization
on the VA so that reads for replaying still occur at
segment-sized granularity. To realize this alternative
design, all we need to change is the L-to-P mapping
for the local disk; we substitute it with an “identity
mapping”, which simply maps a logical address re-
ceived from the file system to an identical physical
address. The PR Server employs helper threads to
perform asynchronous writes to the local partition
and it limits the maximum number of outstanding
writes to 20. Table 9 refers to this alternative as
“VA→UFS”.
Finally, to evaluate the impact of a faster mo-

bile storage device, we replay from a local partition-
based VVA (as described in Section 3.7) to another
local partition, both of which are log-structured. Ta-
ble 9 refers to this last alternative as “VVA→LFS”.

During these experiments, the cleaner on the
log-structured local partition did not get invoked.
Both cleaning and replaying are background activi-
ties that can result in synergistic benefits. We plan
to investigate the performance impact of this in-
tegration in the near future. Furthermore, since
all the storage devices in a PersonalRAID are self-
contained, it is possible for end hosts to indepen-
dently clean their local disks when they are not in
use. Therefore, it is possible that large number of
free segments are available before replaying starts.
Table 9 shows that despite the fact that both the

VA→LFS and the VA→UFS configurations are lim-
ited by the slow read performance of the Microdrive,
the former can replay significantly faster than the
latter, thanks in no small part to the former’s log-
structured organization. If the VA device could per-
form reads faster, the impact of the log-structured
organization would have been even more dramatic as
implied by the VVA→LFS performance numbers.

6 Related Work

Although PersonalRAID can be extended to
deal with conflicting updates (as discussed in Sec-
tion 3.8.1) and this is one of our ongoing research
topics, the primary use cases targeted by Personal-
RAID today are just that: personal usage scenar-
ios where the availability of a single coherent name
space and reliability are the primary concerns but
conflict resolution is not. Conflicts are inherently file
system-level or application-level events that must be
addressed at these higher levels. PersonalRAID is a
storage-level solution that can only provide mecha-
nisms such as versioning that higher level systems
may exploit. A number of research systems (includ-
ing Ficus [11], Coda [6], and Bayou [10, 15]) have
focused on conflict resolution techniques that may
provide insight on how to build and extend services
running on top of PersonalRAID.
Many systems share PersonalRAID’s goal of syn-

chronizing the contents of a number of hosts; these
systems include disconnected client/server systems
such as Coda [6], distributed applications such as
those built on top of Bayou [10, 15], and replicated
databases such as those provided by Oracle [8] and
Sybase [2]. A common technique is to use an oper-
ations log that is recorded at the site that initiates
the updates and is replayed at the various replicas.
A variation of the theme is the use of “asynchronous
RPCs” as those employed by Rover [5]. Before log
replaying is complete, the access to a replica needs
to be suspended if one does not want to expose stale
data. We have determined that neither stale data

nor the latency involved in log propagation may be
tolerable for a PersonalRAID user. Thanks to its
LFS roots, PersonalRAID inherits the absence of the
notion of a separate operations log—the collection of
distributed logs is the storage system. As a result,
the fresh updates carried in the VA device are always
immediately accessible while replaying can occur in
the background when convenient.

A VA device is similar to a disconnected Coda
client in that it “hoards” data and buffers the latest
changes [6]. It is different in that the VA device is
not meant to support I/O operations on its own: the
role of the VA in a PersonalRAID is two fold: (1)
it acts as a transporter of all updates that are used
to synchronize the contents of several disconnected
end hosts, some of which may be mobile; and (2)
it supports I/O operations only when it is coupled
with a host local disk. There is no user involvement
or guesswork involved in determining the content of
the VA; and there is no danger of a “hoard miss.”

The use of a mobile device to carry updates to
other weakly connected hosts to bring about even-
tual consistency via pair-wise communications is
similar to the approach taken by Bayou [10, 15].
Bayou provides a framework for application-specific
conflict resolution and applications must be re-
programmed or developed from scratch to take ad-
vantage of the Bayou infrastructure. PersonalRAID,
as a storage system, does not resolve conflicts in it-
self; as a result, it is possible for us to develop a
general system, on top of which existing personal
applications may run unmodified.

Existing mobile systems typically do not address
data reliability on mobile hosts: these mobile hosts
are typically considered inferior “second-class citi-
zens” and their data is vulnerable until they are
propagated to “first-class citizen” servers that are
professionally managed and backed up occasionally.
PersonalRAID provides protection against any sin-
gle device loss at all times by leveraging the exact
same mechanism that is needed to bring about even-
tual consistency of the system.

Finally, there are existing applications such as
the Windows “Briefcase” that can synchronize the
contents of multiple hosts. The two problems with
these applications are exactly the problems that Per-
sonalRAID is designed to address: (1) the inconve-
nience involved in manual movement of data, and
(2) the poor performance in terms of both latency
and throughput during synchronization events.

7 Conclusion

As storage technology advances, a user is fac-
ing an increasing array of disconnected storage de-
vices. Two of the important challenges a user must
face is the lack of a single transparent storage space
that is ubiquitously available and a certain degree
of reliability assurance. PersonalRAID is a mo-
bile storage management system that attacks these
two problems. At the heart of a PersonalRAID is
a mobile Virtual-A device that allows the user to
transparently transport, replicate, and access data
while interacting with a number of disconnected
storage devices. By employing a distributed log-
structured organization, the system is able to ac-
complish these tasks without imposing any serious
performance penalty on the user.

Acknowledgments

We would like to thank Brent Waters, Victor
Shnayder and Atul Pokharel for their ideas and help
during the initial part of the project. Thanks are
also due to our shepherd David Kotz and other
FAST reviewers for their detailed and critical com-
ments.

References

[1] de Jonge, W., Kaashoek, M. F., and Hsieh,
W. C. The Logical Disk: A New Approach to Im-
proving File Systems. In Proc. of the 14th ACM
Symposium on Operating Systems Principles (De-
cember 1993), pp. 15–28.

[2] Gorelik, A., Wang, Y., and Deppe, M. Sybase
Replication Server. In Proc. ACM SIGMOD Con-
ference (May 1994), p. 468.

[3] Growchowski, E. Emerging Trends in Data Stor-
age on Magnetic Hard Disk Drives. In Datatech
(September 1998), ICG Publishing, pp. 11–16.

[4] Howard, J., Kazar, M., Menees, S., Nichols,
D., Satyanarayanan, M., Sidebotham, R., and

West, M. Scale and Performance in a Distributed
File System. ACM Transactions on Computer Sys-
tems 6, 1 (Feb. 1988), 51–81.

[5] Joseph, A. D., deLespinasse, A. F., Tauber,
J. A., Gifford, D. K., and Kaashoek, M. F.

Rover: A Toolkit for Mobile Information Access.
In Proc. the 15th ACM Symposium on Operating
Systems Principles (December 1995), pp. 156–171.

[6] Kistler, J., and Satyanarayanan, M. Discon-
nected Operation in the Coda File System. ACM
Transactions on Computer Systems 10, 1 (Feb.
1992), 3–25.

[7] Lumb, C., Schindler, J., Ganger, G. R.,
Riedel, E., and Nagle, D. F. Towards Higher
Disk Head Utilization: Extracting “Free” Band-
width from Busy Disk Drives. In Proc. of the Fourth
Symposium on Operating Systems Design and Im-
plementation (San Diego, CA, October 2000).

[8] Oracle Corporation. Oracle7 Server Distributed
Systems: Replicated Data, 1994.

[9] Ousterhout, J. Why Aren’t Operating Systems
Getting Faster As Fast As Hardware? In Proc. of
the 1990 Summer USENIX (June 1990).

[10] Petersen, K., Spreitzer, M. J., Terry, D. B.,
Theimer, M. M., and Demers, A. J. Flexible
Update Propagation for Weakly Consistent Repli-
cation. In Proc. the 16th ACM Symposium on Op-
erating Systems Principles (October 1997), pp. 288–
301.

[11] Reiher, P., Heidemann, J., Ratner, D., Skin-
ner, G., and Popek, G. Resolving File Conflicts
in the Ficus File System. In Proc. the Summer
USENIX Conference (June 1994), pp. 183–195.

[12] Rosenblum, M., and Ousterhout, J. K. The
design and implementation of a log-structured file
system. ACM Transactions on Computer Systems
10, 1 (1992), 26–52.

[13] Seltzer, M., Bostic, K., McKusick, M., and
Staelin, C. An Implementation of a Log-
Structured File System for UNIX. In Proc. of the
1993 Winter USENIX (Jan. 1993), pp. 307–326.

[14] Seltzer, M., Smith, K., Balakrishnan, H.,
Chang, J., McMains, S., and Padmanabhan, V.

File System Logging Versus Clustering: A Perfor-
mance Comparison. In Proc. of the 1995 Winter
USENIX (Jan. 1995).

[15] Terry, D. B., Theimer, M. M., Peterson, K.,
Demers, A. J., Spreitzer, M. J., and Hauaser,

C. H. Managing Update Conflicts in Bayou, a
Weakly Connected Replicated Storage System. In
Proc. the 15th ACM Symposium on Operating Sys-
tems Principles (December 1995), pp. 172–183.

