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Abstract

Storage outsourcing is an emerging industry that shields storage users from the complexity of in-house
storage management, while providing cost savings and reliability improvements via the aggregation of
storage into large, special-purpose facilities. These distributed and replicated facilities are operated by a
storage service provider, and are accessed by remote users via high-speed network connections.

The viability of storage outsourcing is critically dependent on the performance of remote storage. In this
paper, we measure the performance of I/O benchmarks accessing a remote block-level storage system. We
use benchmarks that represent a variety of workloads, running on several operating systems and file
systems. Network latencies represent distances ranging from a local neighborhood to halfway across a
continent. We vary the network loss characteristics to correspond with the conditions of either dedicated
fiber or shared Internet (with loss rates up to 10-3). We examine the effectiveness of basic latency-hiding
techniques such as caching, application prefetching, and asynchronous writes. We conclude that remote
storage is already viable for a wide variety of active workloads, and we point out areas where new
techniques could provide significant additional performance enhancement.

1 Introduction

Storage management is complex and expensive.
For example, IDC estimates that for every dollar
spent on storage equipment, an additional $6 will
be spent on managing the storage [16]. This
includes the expert help required to configure the
storage systems (e.g., host, RAID, and SAN
configuration, cabling, and cooling), to
administer it (backup and restore), and to
manage it for high availability (capacity
planning, disaster recovery). These problems are
motivating the emergence of storage service
providers, who sell data storage as an outsourced
business service. Among the major storage
service providers are traditional computing
system suppliers (e.g., IBM, HP),
telecommunication vendors (e.g., Qwest), and
startups such as StorageNetworks Inc.
(www.storagenetworks.com).

Remote storage has a long history for
applications such as distributed databases and
FTP archives, but dramatic improvements in the
price and availability of high-speed networking
suggest that a much broader scope of
applications may thrive in an environment of
outsourced storage and commercial storage

service providers. The viability of the emerging
storage outsourcing industry depends, in part, on
whether acceptable performance can be obtained
from remotely-accessed storage, but the open
literature lacks technical data on the performance
of remote storage systems. Can remote storage
substitute for host-attached disks, nearby storage
area networks, or LAN-based network-attached
storage servers?

To explore this question, we measure a variety of
benchmarks widely used in the file system and
database communities. Our experimental
platform consists of PCs, a fiber-based gigabit
Ethernet, a router testbed, and our own SCSI
over IP implementation, which predates
standards, but is largely comparable to iSCSI.
We measure benchmarks on an accepted kernel
tool (the FreeBSD dummynet package) that
introduces “network delay” and loss into the
protocol stack. On this platform we measure
benchmarks when network propagation delay
ranges up to 8 ms, corresponding to 1600 km of
fiber. We also investigate the performance of
outsourced storage under the network delays and
packet losses characteristic of the Internet, using
a testbed that consists of two Cisco routers with
an OC-3 backbone, and a pair of Smartbits
generators that generate background traffic



consistent with a traffic profile derived from
recent Internet traffic studies [4, 30, 21].

We observe that in lossless network conditions,
the remote storage behaves in many respects like
a local disk that has a moderately slow access
time: the traditional caching, application
prefetching, and asynchronous write techniques
are typically effective in hiding the access
delays. For high performance under loss and
delay characteristics similar to the Internet, I/O-
intensive benchmarks may require a large cache,
network protocol tuning, and network support
for packet prioritization.

The structure of this paper is as follows. Section
2 covers related work, Section 3 describes our
remote storage testbed and benchmarks, Section
4 presents the performance measurements and
discusses techniques to overcome network
latency and congestion in a remote-storage
environment, and Section 5 gives concluding
remarks.

2 Related Work

2.1 Storage over IP Protocols

A key component of storage outsourcing is the
transport of stored data over a communication
network. Current storage service providers offer
raw data block service over local storage-area
networks (SAN) and over wide area networks
(WAN). They typically use proprietary products
such as EMC’s SRDF software to replicate data
to remote storage [6], and rely on a media-
specific protocol (e.g., Fibre Channel protocol,
ESCON, ATM) as the transport protocol. An
emerging alternative for remote storage access is
to encapsulate SCSI disk commands and data in
IP packets. This approach is the target of a
standardization effort by the Internet Engineering
Task Force. iSCSI [24] is a SCSI over TCP/IP
protocol proposed by a group including IBM,
Cisco, HP, Quantum, SanGate and 3Com. It
enables clients to address SCSI devices directly
over an IP network. The protocol provides flow
control, a method to include phase and tag
information in a TCP stream, target buffer
management, and resource discovery and
management. Several working prototypes have
been demonstrated in the InterOperability Lab at
the University of New Hampshire [11]. In
October 2001, the current iSCSI draft defines the
encapsulation mechanism, message format, and

session management, but many additional
aspects are still under discussion.

Prior research projects have studied the use of IP
over LAN or SAN for storage applications. The
NASD project at CMU developed a storage
architecture that enables direct client access to
storage on a LAN [9]. The storage device exports
an object interface, and allows clients to read and
write to it directly, after securing the proper
security credentials from an object manager.
Prototypes implemented on Alpha workstations
using RPC over UDP/IP demonstrated
performance comparable to server-attached
disks, but with better scalability. The Netstation
project at USC studied the feasibility of using IP
as a transport protocol between host and
peripherals (e.g., storage devices) [32]. They
implemented prototypes on Sun workstations
with UDP/IP, and showed that it is possible to
achieve 80% of SCSI’s maximum throughput
without the use of network coprocessors.

2.2 File System Research

Remote storage raises many of the traditional
problems seen in file system research. Many file
system techniques such as caching and
prefetching [15] are effective in hiding the delays
associated with access to local disks, so we
expect them to be similarly helpful to the
performance of remote storage. More recent file
system research on minimizing the number of
file system synchronous writes [8] and reducing
write latency for small writes [33] will also
alleviate the impact of network delay on data
written to remote storage. See [25] for a
summary of recent work in this area.

Most distributed file systems employ latency-
hiding techniques to mitigate the effects of
network delay on client performance. These
techniques include caching data at the client,
reducing the number of synchronous writes, and
reducing the protocol overheads. For example,
NFS v3 [20] uses asynchronous writes with
commit. NFS v4 [26] groups related commands
into a single compound command to reduce the
number of round-trip times. It also delegates
data ownership to clients to enable more
aggressive client-side caching. Martin et al. [14]
analyze the effect of network delay on the
SPECsfs benchmark running on NFS v3. They
verify their measurements analytically with a
queuing model. Their results indicate that NFS is



insensitive to network latency up to 150 µs, and
that performance decreases linearly with
increasing delay.

A large body of research and commercial
products show how to implement file systems on
top of shared block storage [29]. These works
complement our research and can provide the
front end to our storage system.

Our paper extends previous work in several
ways. We give measurements of SCSI over IP
access to remote storage for network latencies
corresponding to distances up to 1600 km, for a
variety of I/O-intensive low-level and
application-level benchmarks. In this context,
we compare the performance on several
operating systems and file systems, we examine
the consequences of packet loss and congestion
as seen in the Internet, and we explore the impact
of techniques such as server-side and client-side
caching and suppression of synchronous writes.

3 Remote-Storage Architecture

In our lab we have several projects that
investigate broad issues in remote storage, and
that deal with a variety of topics such as storage
virtualization, remote replication and failure
recovery, the partitioning of storage resources to
serve concurrent clients, and implementing all
the details of the emerging iSCSI protocol. For
the performance experiments described in this
paper, we use a simplified remote storage
architecture that that consists of a single client
site that is networked to a single storage site, as
depicted in Figure 1.

3.1 System Description

The center portion of Figure 1 shows a network
that connects a pair of machines called the host
gateway (HG) and the storage gateway (SG).
These machines implement SCSI over IP, and in
experiments in Section 4.4 they also perform
caching. (In a full storage system, the HG and
SG machines would also implement mechanisms
such as virtualization, replication, and recovery.
In small systems, the HG and SG functionality
might be implemented by cards rather than by
separate PCs.) On the left side of the figure, the
host connects to the HG via a standard SCSI
cable, on which the HG appears to be one or
more local SCSI disks. On the right side of the
figure, the SG behaves like a local host as it
accesses standard SCSI disks or RAID arrays on
behalf of the HG.

The host, the HG, and the SG are PCs equipped
with an Intel 440GX motherboard, dual 700
MHz PIII CPUs, 768 MB SDRAM, Intel 100
Mb/s Fast Ethernet, and Adaptec 29160 Ultra160
SCSI adapter cards. All PCs run FreeBSD OS
3.4 (except for experiments we describe that
measure other operating systems). We run most
benchmarks directly on the host, but the Surge
and TPC-C benchmarks use a 3-level
architecture in which a pool of clients access the
host machine as a server, which in turn accesses
remote back-end storage via the HG. The Surge
clients access the host server via http. The
TPC-C clients access the host database server via
SQLNet. For Surge and TPC-C, the clients are
PCs equipped with Intel 440BX motherboard,
400 MHz PII CPU, 64MB SDRAM, and Intel
100 Mb/s Fast Ethernet.

Our version of SCSI over IP for these
experiments predates the IETF iSCSI draft [24].
We wrap SCSI messages according to the iSCSI
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Figure 1: Storage Outsourcing Architecture.



message format, and transport them over
TCP/IP. We use the immediate data option to
send data along with the write command where
possible. This version of our SCSI over IP does
not implement functionality such as resource
discovery and error recovery.

Figure 1 shows that the network connection
between HG and SG can take two forms, which
we call the delay testbed, and the congestion
testbed. The delay testbed is used for
experiments in which the WAN is assumed to be
a dedicated high-speed fiber network. In this
setting, we take measurements on a short
physical network (a Lucent P550 Cajun Gigabit
Ethernet Switch between a pair of Alteon ACE
Gigabit Ethernet cards) that is augmented with
the FreeBSD dummynet tool [22]. Dummynet is
a kernel tool that modifies the behavior of the
network protocol stack in ways that accurately
mimic network behavior with respect to queuing,
bandwidth limitations, delays, and packet losses.
We use dummynet to vary the one-way
propagation delay from 0 ms to 8 ms to reflect
the performance impact of network distances up
to 1600 kilometers. We calibrate the dummynet
settings by measuring the performance of the
ping command over a pair of actual fibers that
form a 60 km bidirectional link (0.3 ms
propagation delay each way). Although we use
Gigabit Ethernet as the storage interconnect in
the delay testbed, we believe that our findings
would be similar over alternative storage
interconnects such as Fibre Channel.

The congestion testbed simulates the congestion
and packet loss of the Internet. The backbone
consists of a pair of Cisco 7505 routers
connected via an OC-3 link (155 Mb/s). The
edge access networks are Fast Ethernets (100
Mb/s). We use a pair of Smartbits hardware
traffic generators to impose background traffic
on the backbone. Smartbits is more controllable
and accurate than is a host-based generator such
as tcplib [5]  a host-based TCP generator will
back off under high load, thus failing to maintain
the desired background load, whereas Smartbits
can be programmed to maintain a fixed load
distribution. Similarly, it would be difficult to
simulate network congestion accurately via a
simple tool like dummynet, because the various
network parameters (e.g., delay and error rate)
vary in a non-linear way with increasing load.

Our traffic profile represents current Internet
behavior, by contrast with earlier networking

studies based on telnet and ftp traffic (e.g., [2]).
We obtain detailed statistics for bytes, packets,
and flows from [21, 4], and second-order
statistics on packet delay from [30]. Our traffic
profile is summarized as follow:

Protocol: TCP (95%), UDP (5%), ICMP (<1%).
Application: http (75%), ftp (5%), misc (20%).
Packet length: 50% <44 bytes, 75% <576 bytes,
99% <1500 bytes.

We measure three types of storage devices: an 8
GB IBM DNES disk with 2 MB disk cache, an
18 GB IBM DDYS disk with 4 MB disk cache
[10], and a Terrasolution disk array [3] with 128
MB disk cache and eight 18 GB IBM DDYS
disks configured as RAID 5 with a 16 KB chunk
size. We enable write cache on the disk,
assuming that recovery is handled elsewhere
(e.g., using NVRAM in the HG.)

Our measurements are conducted on 3 operating
systems and 4 file systems. The bulk of our
experiments are run on FreeBSD OS v3.4, which
has a tunable file cache and a separate VM cache
that holds clean data only. On this platform we
measure the traditional UNIX FFS that uses
synchronous metadata updates to ensure that it
can recover the file system data structures to a
consistent state after a crash, and we measure the
more modern Soft Updates FFS, which uses
careful update ordering to reduce the number of
synchronous writes while still ensuring integrity
[25]. We also repeat selected benchmarks on
Microsoft Windows NT4.0, which has a small
(and non-tunable) file cache, and on Windows
2000, which has an integrated file and VM
cache. The Windows measurements are
conducted on both the FAT file system, which
uses synchronous writes to maintain metadata
integrity, and on the more modern NTFS, which
is a journaling file system that avoids
synchronous writes by logging metadata updates
to two log files on the disk [28].

3.2 Benchmarks

We choose our benchmarks to represent a wide
variety of workloads that could access remote
storage. The goal of our evaluation is to
understand the impact of network delays, file
system features, and storage system parameters
on application performance when using remote
storage. Each data point is obtained from 10
experimental runs. About 2 months are required



to run 10 iterations of the full suite of
experiments.

We begin with microbenchmarks that measure
basic read and write performance, for sequential,
random, and identical-block access patterns.
(The latter access pattern reveals the time for a
hit in the disk’s cache.) These microbenchmarks
access the raw disk device (i.e., the remote
storage that is made to look like a local raw disk
by our SCSI over IP software). We use a single-
threaded program that reads or writes blocks that
range from 1 KB to 64 KB. Our working set is 4
times larger than the remote storage system’s
cache. The performance metric is bandwidth
(Mbytes/sec). We are able to model these simple
I/Os analytically, and we use these models to
give insight into the performance of the
application benchmarks described below.

The SSH benchmark [25] represents a software
development workload. It unpacks, configures,
and builds a software package named SSH. The
unpack phase extracts a compressed tar archive
containing the source tree (383 files, totaling
about 65,000 lines of commented code). It thus
reads a large file sequentially and generates
many subsequent small metadata operations. The
config phase determines what features are
available on the host operating system and
generates a makefile. To do this, it compiles and
executes many small test programs. Because
most of the operations are on small files, we
expect many metadata operations. The build
phase executes the makefile to build the ssh
executable. We run the three phases of the
benchmark consecutively, so the config and
build phases run with the file system cache
warmed by the previous phases. We use
throughput as a performance metric, by
converting the time to run a single SSH
benchmark iteration into iterations/hour.

The SDET benchmark [7] is designed by SPEC
to simulate a typical timesharing workload. It
models a software development environment
(e.g., editing, compilation, and various UNIX
utilities), and makes extensive use of the file
system. SDET runs scripts that execute a
predetermined mix of commands, and the
reported metric is scripts/hour, as a function of
the number of scripts running concurrently. We
report results with 32 concurrent scripts.

The Surge benchmark [1] uses a workload
generator to simulate a set of users accessing a

web server. It is parameterized by empirical
statistics extracted from web server logs. The
parameters model server file size distribution,
request size distribution, relative file popularity,
embedded file references, temporal locality of
reference, and idle periods of individual users.
We run the benchmark with default settings,
except that we increase the data size and load by
using 20,000 files, and 4 clients, each running 2
processes and 50 threads per process. These
parameters represent a workload with 400
timesharing users accessing a 1 GB data set. The
performance metric is operations/sec.

The PostMark v1.1 benchmark [12] simulates
the workload seen by Internet Service Providers
under heavy load: a combination of electronic
mail, netnews, and web-based e-commerce
transactions. It creates a large set of files with
random sizes within a set range, and then
executes a large number of file create, delete,
read and append operations. We set the
benchmark to run with 250,000 files and the
default size range (512 bytes to 16 KB), giving a
working set of 500 MB. The performance metric
is transactions/sec.

The TPC-C benchmark [31] simulates an online
transaction-processing database workload. It
models a wholesale supplier managing orders,
and a workload consisting of a specified mix of
five transaction types. We store the database in
an Oracle 8i database v8.1.7 Enterprise Edition,
and run experiments on Windows NT Server 4.0
SP6, and on Windows 2000 Server 5.0. The
database is created using default settings
recommended by Oracle. The client program is
written in the PL/SQL language, adapted from
the TPC-C sample program in Appendix A of
[31]. We use a scaling factor of 30 to size the
database, resulting in a working set of 2 GB
(including log files). The database is restored to
the same state prior to each run using a disk-level
restore command. The complete database
(including initialization files) resides in a single
file system on the remote storage. For
convenience, and as recommended by Oracle, we
store the database in a file system rather than in a
raw disk partition. Accessing the database
through raw I/O instead of through a file system
could improve performance by 5–10% [19], but
this would not affect our conclusions. The
performance metric is transactions/min.

4 Performance Results



Table 1: Microbenchmark performance (8 KB record size) on FreeBSD. The working set is 4 times the disk
cache size for disk-based storage systems, and 1 GB for the null device. Performance is expressed in throughput and response
time, and we report the average of ten runs. The standard deviation is less than 2% of the mean; the maximum deviation is
6%. Local disk is a server-attached disk, Target disk resides on the HG and does not incur SCSI over IP overheads. We vary
the one-way network delay from 0 to 8 ms.

Throughput (MB/s) for Microbenchmark with 8KB record Size

1 Disk, IBM DNES 1 Disk, IBM DDYS Disk Array, 8xDDYS Null Device

Random Sequential Random Sequential Random Sequential Random Sequential
Net.

Delay
(ms)

Read Write Read Write Read Write Read Write Read Write Read Write Read Write Read Write

Local 0.77 0.70 13.94 20.00 1.07 1.57 34.04 29.40 1.01 3.38 19.52 16.94 1224.18 2501.56 1436.52 3555.56

Target 0.76 0.70 13.26 19.19 1.05 1.40 28.97 29.86 1.00 3.14 12.83 12.94 49.02 51.22 52.51 51.85

0 0.73 0.70 9.86 9.75 0.97 1.43 10.40 9.93 0.95 2.92 8.48 8.43 18.16 18.71 17.96 19.17

1 0.62 0.70 2.84 2.89 0.79 1.40 3.00 2.91 0.77 2.67 2.48 2.77 3.25 3.26 3.28 3.29

2 0.53 0.70 1.65 1.67 0.66 1.41 1.70 1.67 0.62 1.59 1.58 1.63 1.79 1.77 1.80 1.82

4 0.42 0.67 0.90 0.91 0.49 0.90 0.91 0.90 0.47 0.88 0.88 0.88 0.95 0.95 0.94 0.95

8 0.29 0.46 0.47 0.47 0.33 0.47 0.47 0.47 0.32 0.47 0.47 0.47 0.47 0.46 0.46 0.46

Response Time (ms) for a single 8KB I/O
1 Disk, IBM DNES 1 Disk, IBM DDYS Disk Array, 8xDDYS Null Device

Random Sequential Random Sequential Random Sequential Random Sequential
Net.

Delay
(ms) Read Write Read Write Read Write Read Write Read Write Read Write Read Write Read Write
Local 10.38 11.44 0.57 0.40 7.50 5.10 0.24 0.27 7.89 2.37 0.41 0.47 0.01 0.00 0.01 0.00

Target 10.50 11.45 0.60 0.42 7.60 5.70 0.28 0.27 8.02 2.55 0.62 0.62 0.16 0.16 0.15 0.15

0 10.99 11.38 0.81 0.82 8.24 5.61 0.77 0.81 8.43 2.74 0.94 0.95 0.44 0.43 0.45 0.42

1 12.94 11.48 2.82 2.77 10.09 5.71 2.67 2.75 10.35 3.00 3.22 2.89 2.46 2.46 2.44 2.44

2 15.11 11.44 4.86 4.80 12.21 5.67 4.71 4.80 12.82 5.02 5.08 4.92 4.48 4.52 4.46 4.40

4 19.04 11.89 8.92 8.82 16.29 8.93 8.79 8.86 17.13 9.06 9.08 9.09 8.43 8.42 8.50 8.41

8 27.18 17.47 17.10 17.04 24.46 17.09 16.99 17.02 25.32 17.20 17.17 17.20 17.20 17.35 17.35 17.35

4.1 Microbenchmark Results

To see the basic effects of network delays, and to
discover where the system overheads are, we
begin with measurements of blocking 8 KB
reads and writes from a single thread that runs on
the host PC. We measure I/Os to a local SCSI
disk on the host, (reported in the row labeled
“local” in Table 1), and I/Os to a local SCSI disk
on the HG machine (the row labeled “target”),
and I/Os to storage on the SG under various
network delays. We conduct measurements on
several kinds of storage devices: an IBM DNES
disk, an IBM DDYS disk, a RAID 5 array, and
/dev/zero (the latter enables us to separate out
storage hardware delays from SCSI over IP
processing). We also use in-kernel timing
measurements to approximate the latency of each
component between the host and the remote disk.
These latter measurements are given in Figure 2.

The basic performance can be modeled simply,
as described in more detail in [18], via this
equation.

TIOLatency = Tdisk + 2×TnetDelay + TiSCSI (1)

For random I/O, Tdisk is the disk access time
(seek, rotation and command processing) plus
the data transfer time (i.e., number of bytes
divided by media transfer rate) [10]. For
sequential I/O, Tdisk omits the seek and rotational
components. TnetDelay is the one-way network
latency, and TiSCSI is our SCSI over IP protocol
processing latency. From Figure 2, we see that,
in the case of an 8 KB data transfer to the disk
with a 64 B acknowledgement from the SG,
TiSCSI is 0.408 ms.

In Table 1 we can see the round-trip overhead of
our SCSI over IP implementation in the response
time section  it is the difference between the
local row and the 0 ms row. The overhead
generally ranges from 0.4 to 0.6 ms, which is in



approximate agreement with the sum of the
component overheads shown in Figure 2 (about
0.4 ms). In the throughput table, the null device
measurements with 0 ms network latency show
that the overhead of this SCSI over IP
implementation limits the throughput of a single
blocking thread to about 18 MB/s for 8 KB I/Os.
The corresponding figure for 64 KB I/Os is
about 30 MB/s.

The throughput table shows a huge drop in
sequential I/O performance from network delay.
The reason is that the sequential workload hits in
the disk drive cache, so any network delay gives
a huge percentage increase in total service time.
For instance, consider sequential writes to the
single DDYS disk. The throughput is 34.04
MB/s for the local disk, 10.4 MB/s for a 0 ms
propagation delay, and 3.00 MB/s for a 1 ms
propagation delay. This performance drop is
explained by the response time table. At 34
MB/s, the I/O response time is 0.24 ms (the
disk’s cache acks the write immediately). Adding
an overhead of 0.5 ms (for SCSI over IP)
increases the total response time to 0.77 ms:
SCSI over IP increases the delay by a factor of 3,
which cuts the throughput by a factor of 3.
Adding an additional 1 ms of propagation delay
each way increases the total latency to 2.75 ms:
When the latency grows from 0.24 ms to 2.75
ms, the throughput drops proportionally, from
34.04 MB/s to 3 MB/s. In general, for the
sequential I/O microbenchmark the response
time doubles as the network latency doubles. The
random workloads are less severely impacted by

network latency, because the disk random-access
latency dilutes the impact of the network latency.

For single disk configurations (shaded columns
in Table 1), random write performance is
relatively insensitive to network delay. Figure 3
explains this behavior by analyzing the event
sequence that occurs when writing to a busy
disk. At t1, a write request reaches the disk and
the disk generates a SCSI status message
immediately. The disk starts to flush the data to
media since its cache is full. At t2, another write
reaches the disk, but it must wait until the
previous write completes at t3, freeing up space
in the cache. Thus, if the roundtrip delay
(2×TnetDelay) is less than the disk response time
(Tdisk), the network delay is masked by the disk
latency and the client’s response time remains
constant (i.e., Tdisk + TiSCSI). If the roundtrip
delay is greater than the disk latency, the client’s
response time is only dependent on the network
delay (i.e., 2×TnetDelay + TiSCSI). This behavior is
not seen in the disk array because of its larger
cache and much higher aggregate write
bandwidth.

For an I/O size smaller than the disk array chunk
size (16 KB), the disk array overhead generally
impairs the performance of a single-threaded
request stream. In the case of a workload that
has concurrent I/O requests, we would expect the
aggregate performance of the array to be better
than that of a single disk.

Host HG SG Disk

TiSCSI = 2××××(52µs + 12µs+ 60µs)+ 81µs+ 2××××(1µs+ 10µs+ 15µs)+ 27µs = 408µs

B. 52 µµµµsB. 52 µµµµs

HG Process
SCSI
Driver

SCSI
Card

TCP/IP
Driver

GbE
Card

SG Process
SCSI
Driver

SCSI
Card

TCP/IP
Driver

GbE
Card

GbE
Switch

Data SizeModule
64 B 1.5KB 8KB

A HG/SG Process 10 µs 12 µs 12 µs
B SCSI (CAM+Adaptec 2960) 1 µs 11 µs 52 µs
C IP (TCP/IP_Alteon NIC) 15 µs 21 µs 60 µs
D GbE Switch (Lucent Cajun) 27 µs 50  µs 81 µs
E Disk Array (Hit in Cache; Random Blocks) 0.27; 5.65 ms 0.29; 5.75 ms 0.38; 6.44 ms
E IBM DDYS Disk (Hit in Cache; Random Blocks) 0.20; 4.67 ms 0.21; 4.75 ms 0.29; 5.09 ms

A. 12 µµµµs

C. 60 µµµµs D. 81 µµµµs
E. 6.44 ms

8KB Write

C. 60 µµµµs

A. 12 µµµµs

Figure 2: Data flow and Latency estimates for a single 8KB I/O in our SCSI over IP prototype.
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Figure 3: Writing a Single Block to a Random
Disk Address.

4.2 Application-Level Benchmarks

The microbenchmark measurements in the
previous section indicate that network latency
impairs the performance of a single-threaded
process that spends 100% of its time trying to do
I/O from remote storage. We next consider the
performance of a variety of application-level I/O
benchmarks, to see the performance of remote-
storage on more typical workloads. Except where
stated otherwise, the measurements in this
section are obtained on a remote storage system
that uses a disk array (not a single disk).

4.2.1 Experiments that vary network
latency

Table 2 shows the application benchmark
performance versus network delays, for the
FreeBSD OS with the traditional FFS and the
Soft Updates FFS file systems, and for Windows

NT and Windows 2000 with the NTFS and the
FAT file systems. We measure I/Os to storage on
the host, (the row labeled “local”), I/Os to
storage on the HG machine (the row labeled
“target”), and I/Os to storage on the SG under
one-way network propagation delays ranging
from 0 to 8 ms.

We make the following observations:

1. Our SCSI over IP implementation
overhead is small.

We observe that our SCSI over IP
implementation adds little overhead, both in
terms of application performance (Table 2), and
host CPU usage. The performance degradation
from a host-attached disk to a target disk
averages 6% across all the benchmarks
(comparing rows labeled Local and Target). We
experienced higher overheads (18%) when
accessing a remote disk over the IP protocol
stack (comparing rows labeled Local and 0 ms).
The CPU usage at the HG is less than 10% for
all workloads, implying that we do not need a
high performance processor for the SCSI over IP
gatewayit would be feasible to implement the
gateway on a network interface card.

2. Network latency has little effect on web,
database, and CPU-bound benchmarks.

The Surge benchmark models a typical web
server, where hot documents are accessed very
frequently, and thus many accesses hit in the web
server's local cache. Consequently, the workload
seen by the remote storage consists largely of
asynchronous sequential writes to log files. Thus,
we observe very little sensitivity to network
latency. For the TPC-C benchmark, we observe

Table 2: Application benchmark performance. The local row gives the throughput (as defined for each
benchmark in Section 3.2) of a host-attached disk array. Other rows give the normalized throughput as a fraction of the
local row. The target row accesses an array on the HG, without SCSI over IP overheads. Subsequent rows vary the one-
way network delay from 0 to 8 ms. Soft is the Soft Updates FFS file system. We report the mean over ten runs: the
standard deviation is less than 5% of the mean; the maximum deviation is 16%.

FreeBSD 3.4 Windows 2000 Windows NT Server 4.0

SSH SDET PostMark Surge PostMark TPC-C PostMark TPC-C
Net.

Delay
(ms)

Soft FFS Soft FFS Soft FFS Soft FFS FAT NTFS FAT NTFS FAT NTFS FAT NTFS

Local 67.3 60.0 4253.7 3376.9 386.2 361.9 3058.0 2765.9 326.3 237.6 730.7 727.1 80.0 61.7 750.1 733.5

Target 0.94 0.96 0.94 0.84 0.91 0.95 0.96 0.96 0.96 0.89 1.01 1.02 0.98 0.91 0.95 0.97

0 0.89 0.98 0.70 0.49 0.56 0.57 0.97 0.84 0.70 0.55 1.00 1.02 0.94 0.92 0.94 0.95

1 0.87 0.90 0.33 0.15 0.20 0.17 0.92 0.84 0.42 0.31 0.99 1.04 0.74 0.79 0.93 0.94

2 0.83 0.74 0.18 0.08 0.11 0.14 0.90 0.92 0.28 0.25 0.98 0.97 0.50 0.54 0.93 0.93

4 0.78 0.61 0.10 0.04 0.06 0.07 0.89 0.92 0.14 0.13 0.93 0.93 0.32 0.35 0.88 0.90

8 0.69 0.49 0.05 0.02 0.03 0.03 0.86 0.88 0.07 0.07 0.88 0.89 0.17 0.19 0.82 0.84



that the performance is immune to small network
delays (<2 ms). Performance only degrades
modestly with larger network delays, because a
modern DBMS is designed to overcome I/O
latency. It uses a high multiprogramming level
to generate numerous concurrent I/Os, and clever
caching and prefetching to reduce the number of
I/Os that block progress [27]. The database may
prefetch tables to gain the benefit of large
sequential reads, and may use vertical
partitioning of tables to access and cache only
the required columns. Consequently, the
database’s performance will not suffer, given
sufficient concurrency and I/O bandwidth.
Although the SSH benchmark has been proposed
as an I/O benchmark [25], we find that SSH is
mostly CPU bound, especially during the
configure and build phases. Thus, SSH’s
performance decreases by only 33% as the one-
way propagation delay increases from 0 ms to 8
ms, versus 10× for PostMark and SDET.

3. Read traffic is less significant than write
traffic.

Many of these benchmarks (SSH, SDET,
PostMark) have little read traffic that reaches the
disk, as they first generate the data needed in
subsequent phases of the benchmarks, and much
of their working sets fit in main memory. Thus
most traffic seen at the disk level is writes.
(Many file system workloads have this
characteristic because of the effectiveness of
read caching.) TPC-C has significant read traffic
(35–43% of overall bytes transferred). But most
of these reads are either prefetch or not in the
critical path. The DBMS prefetches whole tables
during the early portion of the benchmark. These
prefetches are mostly asynchronous reads from
sequential locations, so they are serviced

quickly. Because the TPC-C working set is
larger than the buffer cache size, pages are
subsequently evicted from the database buffer
cache during the course of the run. Nevertheless,
the number of synchronous reads gradually
decreases during the benchmark run. The write
traffic in TPC-C appears to be mostly delayed
writes and not in the critical path, and thus has
little impact on the application performance.

4. Some applications exhibit super-linear
degradation (> 2x when delay doubles).

With the FFS file system, PostMark and SDET
exhibit a large drop in performance from the
local array to remote storage with 0 ms and 1 ms
propagation delays (see shaded cells in Table 2).
This is the same phenomenon as seen in the large
throughput drops for sequential I/O in the
microbenchmarks. For PostMark and SDET, the
predominant I/O is single-threaded random
writes to metadata. These writes take 0.4 ms in
the disk array (they are ack'd from the array
cache). Since our SCSI over IP overhead is about
0.4 ms for 8KB writes, the degradation is 50%
from a local array to a remote array with 0 ms
propagation delay. When the propagation delay
increases to 1 ms (2 ms round-trip), the response
time for a single 8KB I/O increases to 2.8ms,
and the performance drops accordingly.

4.2.2 Experiments that vary network
congestion

In this section we present the results of the
PostMark and TPC-C benchmarks when
measured on the congestion testbed with the
Smartbits traffic generator applying a
background network load. PostMark is I/O
bound, and the insights that we obtain from it are

Table 3: Effects of Congestion on Application Performance.

Background Traffic Profile PostMark (Trans/sec) TPC-C (trans/min)Load
Factor (%) BW σσσσ(BW) Delay PktLoss BSD FFS BSD SoftUpd NT4.0 NTFS NT4.0 NTFS

0 0 0 0.46 0 64 80 52 722
20 31 9.8 0.54 0 63 79 49 719

30 40 11.7 0.54 2×10-6 60 75 46 720

35 43 12.3 0.55 5×10-6 59 74 48 718

40 56 12.7 0.64 2×10-5 56 73 47 719

50 76 12.8 0.70 5×10-5 53 72 47 717

55 86 12.8 0.72 7×10-5 51 63 46 710

60 96 12.8 0.78 1×10-4 44 54 42 700

70 106 12.8 1.07 3×10-4 26 29 26 693

75 110 12.8 1.68 7×10-4 No Data 668



applicable to other I/O-bound applications. The
TPC-C results demonstrate the effectiveness of
application-level latency hiding techniques.

Table 3 shows the results of PostMark on
FreeBSD with FFS and Soft Updates, and on
Windows NT Server 4.0 with NTFS. This table
also shows TPC-C results on NT Server 4.0. We
measure the performance of these benchmarks as
the background network traffic ranges from 0 to
75% of the backbone link capacity. The
background traffic is based on the traffic profile
described in Section 3.1, and is characterized by
4 parameters: BW is average bandwidth in Mb/s,
σσσσ(BW) is standard deviation of the measured
bandwidth, Delay is round trip propagation delay
in ms, and PktLoss is average packet loss rate.
The shaded region in the table indicates network
congestion (i.e., the application is starved for
network bandwidth).

With no background load, the benchmark
performance is limited by the fixed 0.46 ms
equipment delay inherent in the router network.
As the background load increases, we observe
that the application’s performance decreases
gradually until the onset of congestion. The
bandwidth requirement of the application varies
from 56 Mb/s for PostMark under FreeBSD OS
to 24 Mb/s for TPC-C. When the background
traffic grows so large that it begins to take
bandwidth that is required by the application
(shaded region in Table 3), the application
becomes both delay and bandwidth bound, so
performance deteriorates significantly. Over the
Internet, we may need more than caches and
synchronous write suppression to obtain good
remote I/O performance.

4.3 Identifying bottlenecks in a SCSI
over IP system

In this section we analyze various components in
our SCSI over IP system to identify areas for
improvement. This includes the host, the edge
access equipment (HG and SG), the network, and
the remote storage system.

4.3.1 Host

The host has several components affecting
performance, including the file system, OS,
network protocol stack, and SCSI protocol stack.

File system: We observe from Table 2 that the
file system design affects performance. The
results for Soft Updates versus traditional FFS
show the benefit of suppressing synchronous
I/Os. For instance, PostMark runs 22–33%
faster with Soft Updates under all network delay
conditions.

OS: We focus on host buffer cache design as it
determines the amount of traffic seen at the disk
level. We find that a small (and static-size) file
cache is bad. This can be seen by comparing the
performance of PostMark on NT Server 4.0 and
on Windows 2000. NTFS is supposed to have an
integrated VM cache that is dynamically resized
according to workload, and its cache size can be
controlled by the user (e.g., by setting the
LargeSystemCache parameter [28] or by using
the public domain program CacheSet [23]).
However, we estimate using the Windows Task
Manager tool that the file cache size in NT never
goes beyond 10% of the working set under
various I/O loads and CacheSet settings. The
resulting cache capacity misses significantly
degrade performance, as seen in PostMark,
which runs 4 times slower on NT than on
Windows 2000. An application can compensate
for a small host cache by caching data in
application buffers, as is done in the Oracle
database: the TPC-C performance numbers on
the NT and Windows 2000 platforms are
comparable despite the small host buffer cache in
NT. We also find that the number of file cache
entries should be dynamically tunable. FreeBSD
has a small buffer cache (default 512 buffer
cache entries) that is fixed at kernel build time. It
also has a large VM cache that holds only clean
pages. This limited amount of buffer available to
cache asynchronous write traffic causes I/O-
bound applications running on Soft Updates to
stall during high network delays while waiting
for buffer cache cleaning. This is seen in
PostMark: the performance of traditional FFS
converges with that of FFS with Soft Updates as
the delay increases (see Table 2), even though
FFS with Soft Updates has very few
synchronous I/Os.

TCP/IP: TCP is responsible for 37% of the
latency for an 8 KB transfer to remote storage
when the network propagation delay is 0. This
assumes that we have large TCP windows to
minimize unnecessary fragmentation of SCSI
data, thereby avoiding extra round-trip delays.
Most researchers consider window size to be a
critical bottleneck for networks having a high



bandwidth-delay product [13]. We find that most
application-level benchmarks use record sizes of
4–8 KB (metadata). Larger I/Os (16–256 KB)
are mainly asynchronous data transfers and are
not in the critical path. In our experiments we
verified that a default window size of 64 KB
does not harm performance by comparison with
a larger window size of 640 KB. However,
window size may be important if the application
or file system generates a significant volume of
synchronous I/O traffic. A related issue is the
packet size in the network layer (i.e., the MTU
size). To reduce fragmentation overhead, we
prefer to use the largest MTU allowable by the
network. For example, increasing the MTU from
1.5 KB to 8 KB (i.e., jumbo frame) gives a 15%
performance improvement in the 8 KB random-
write microbenchmark. We also can verify this
from Figure 2, by calculating the 8 KB I/O
latency (0.461 ms versus 0.408 ms). In
application level benchmarks, using a 1.5 KB
MTU instead of 8 KB degrades the performance
by 1%–9% when the propagation delay is low
(i.e., SAN environment); the degradation is less
severe with higher propagation delays (>1 ms).
Lastly, we find that data copying in the host
protocol stack (<10 µs for 8 KB) is insignificant
as it is much smaller than other latencies (e.g.,
81 µs for 8 KB in the GbE switch).

SCSI: SCSI over IP is responsible for 25% of
the latency for an 8 KB transfer to remote
storage when the network propagation delay is 0.
This assumes that we use the immediate data
option that avoids an extra round trip delay that
would be incurred if the command were sent
separately from the data [24].

Our results indicate that hardware assistance for
SCSI and TCP/IP protocol processing may be
beneficial in a SAN. In the SAN, the network
propagation delay is on the order of 10 µs (2 KM
of fiber), whereas our measured protocol
processing time for an 8 IB I/O is 53 µs for
SCSI, plus 75 µs for TCP/IP. By contrast, in a
WAN environment the protocol processing
overhead is insignificant: the propagation delay
dominates.

4.3.2 Network

Our edge access equipment (HG and SG) is
responsible for 327 µs of latency per 8 KB I/O
(see Figure 2). Thus, in a SAN environment,
replacing the HG and SG by a native

implementation of iSCSI in a host adapter and
in the remote storage array could significantly
improve the performance of remote storage. The
network equipment latency (i.e., 81 µs per 8 KB
transfer on a current GbE switch) is also
significant in a SAN. Application performance
degrades with increasing latency to remote
storage, but fortunately, end-system
optimizations such as caching (see Section 4.4)
and synchronous I/O suppression (see Section
4.3.1) often can hide network latency. In a lossy
environment such as the Internet, bandwidth
impairment is the dominant limitation on remote
storage performance, so we may need new
network techniques, e.g., to avoid the bandwidth
destruction that TCP suffers under conditions of
congestion and packet loss.

4.3.3 Remote storage

Slower storage system = better delay
tolerance: If the remote storage device is slow,
that bottleneck reduces the impact of network
latency. This is seen in Figure 4, which
compares the throughput of the SDET
benchmark on remote storage using either a
single IBM disk, or a disk array with 8 disks.
The performance on the remote disk array is
much more sensitive to network delay than is the
single-disk performance.
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Figure 4: Effects of storage system on SDET
performance on FreeBSD and Soft Update file
systems.

4.4 Using cache to hide network delay

In this section we study the extent to which
caches at the HG or the SG can hide network
latency. We assume that we have reliable main
memory or NVRAM [17] so that writes can be
safely acknowledged from the cache, and we
have no cache coherency issues because the



remote storage is partitioned over hosts that have
exclusive access to virtual volumes.

4.4.1 Cache Location

A cache at the HG tends to hide both disk and
network latency. We see this in Figure 5, which
uses the 500 MB working set PostMark
benchmark on FreeBSD to show the
effectiveness of a 1 MB cache that is located at
the HG, by comparison with a cache at the SG,
or no cache (the latter two curves coincide). We
see that the cache at the host side of the network
can hide almost all of the network latency.
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Figure 5: Performance of PostMark with
1 MB cache in HG or SG, versus network
delay in ms. (FreeBSD, Soft Updates, delay
testbed.)

4.4.2 Write Cache

We now examine the effect of the HG cache on
write performance. The size of the write cache
that is required to hide the network latency is
proportional to the bandwidth-delay product of
the network. For instance, an 8 ms network delay
will need about 1 MB of write cache on a
gigabit/s network (0.008 sec × 109 bits/sec ×
0.125 bytes/bit). For the Internet, with variable
delay and congestion, we may need a
significantly larger cache.

Figure 6 shows the performance of PostMark
running on FreeBSD with the Soft Updates file
system on the congestion testbed. We show
curves for 4 different HG cache sizes, where the
size is given in the legend as a percentage of the
500 MB PostMark working set size. The baseline
configuration’s performance (no cache in Figure
6) is initially latency bound, due to the 0.46 ms
round-trip delay inherent in the router network. It

becomes bandwidth bound when the background
load exceeds 55% of the backbone link. We can
overcome the 0.46 ms router latency with a small
amount of cache (i.e., 0.1% or 256 KB). This
enables the application performance to approach
that of a locally-attached disk array. For the
0.1% cache configuration, PostMark becomes
bandwidth bound when the background traffic
exceeds 30% of the backbone link. Its
performance approaches that of the baseline “no
cache” configuration. As we increase the cache
size to 10% of the working set, PostMark is able
to maintain a high transaction rate up to a 55%
load factor. This is because the larger cache
filters write traffic effectively, reducing it by
40%.
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Figure 6: Impact of HG cache size on
PostMark (FreeBSD, Soft Updates, congestion
testbed; HG cache size specified as a percentage
of the 500 MB PostMark working set size.)

4.4.3 Read Cache

Recall from Section 4.3.1 that NT has a very
small file system buffer cache, and thus it incurs
many capacity read misses. We now use the
PostMark measurements on NTFS to examine
the effectiveness of the HG read cache.

Figure 7 shows that the HG cache significantly
improves performance under all load and delay
conditions. We see that a large cache is needed
to achieve performance similar to that of a
locally attached disk array. For example, in the
congestion test we see that with no background
traffic and no cache, the throughput is 50
transactions per second. To tolerate a 70%
loaded backbone with similar performance, the
required cache size is 30% of PostMark’s
working set. Similarly, the delay test shows that
60% of the working set needs to be cached to
mask a one-way propagation delay of 8 ms.
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Figure 7: Effect of cache size on PostMark
performance in the congestion and delay
testbeds. Windows NT Server 4.0, NTFS, with
HG cache size specified as a percentage of the
500 MB PostMark working set size.
Performance is expressed in terms of Throughput
and is based on an average of five runs. The
standard deviation is less than 2.5% of the mean,
with a maximum deviation of 3.9%.

5 Concluding Remarks

Storage outsourcing is an important emerging
industry that forces us to revisit problems at the
nexus of storage systems, file systems, and
network protocols.

In this paper, we report measurements of the
performance of remote storage via extensive
benchmark experiments, using benchmarks that
are widely applied in file system and database
research. Our measurements cover FreeBSD
with two versions of FFS, and Windows NT and
Windows 2000 with NTFS and the FAT file
system. We consider the impact of network
delays when a host accesses remote storage over
local or long-haul networks, and we also study
the effect of congestion and packet loss on the
performance of remote storage.

Our measurements give quantitative
confirmation, in a SCSI over IP remote storage
setting, of the dominant importance of write
traffic, the benefits of suppressing synchronous
writes, the significance of the file system buffer
cache design, and the effectiveness of host-side
caches.

Network delay can adversely affect application
performance. But it can be masked in several
ways, such as by write caching and read
prefetching. The impact of network delay on
performance is strongly influenced by the remote
storage architecture and the network protocol
settings. Slow remote storage masks network
delay. In the case of fast remote storage,
judicious caching and prefetching strategies are
important tools to reduce the sensitivity of
application performance to network delay.

We have observed quite acceptable performance
for application benchmarks that access remote
storage, even given network propagation delays
that correspond to distances of hundreds of
kilometers  but only in the absence of
congestion and packet loss. An important
problem for future work is to develop network
and file system techniques that enable remote
storage systems to maintain good performance
when faced with the delay and loss
characteristics of the Internet. In particular, to
maintain high application performance despite
high network latency, we need techniques to
keep the network connection full of requests and
data. Examples of techniques that can help to
achieve high I/O concurrency include
asynchronous I/O, multithreading, informed
prefetching, and set-oriented data access
methods. To maintain acceptable application
performance in conditions of congestion and
loss, we must revisit some traditional problems
in networks having a high bandwidth-delay
product. TCP bandwidth suffers from an
insufficient ability to distinguish between loss
and congestion, so SCSI over IP needs
assistance, such as from QoS mechanisms or
from other techniques that maintain high
bandwidth despite loss. Many additional
problems also remain for future work. For
instance, small blocking I/Os for metadata
updates can cause serious performance problems
under high network delay. Can the file system
maintain safety in a less costly way? Can the OS
buffer cache do a better job by combining its
write traffic into large scatter-I/O commands?
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