

A Real-Time Garbage Collector for Embedded Applications in CLI

Okehee Goh and Yann-Hang Lee
Computer Science and Engineering Department

Arizona State University
Tempe, AZ 85287

Ziad Kaakani and Elliott Rachlin
Honeywell International Inc.

Phoenix, AZ

Abstract  We are working on scheduling of garbage
collector as a concurrent thread for time-constrained
applications in Common Language Infrastructure (CLI).
We have implemented an incremental garbage collector
with fine-grained write barrier in MONO, an open-
source implementation of CLI. Our collector is based on
existing conservative garbage collector of Boehm et al.
By conducting benchmarking experiment, we will derive
parameters to predict the behavior and overhead of
garbage collection and apply real-time scheduling
algorithms that guarantee the timeliness of applications
without memory starvation.

Index Terms  Common language infrastructure (CLI),
Incremental garbage collection, Real-time scheduling.

INTRODUCTION
Common Language Infrastructure (CLI), introduced as
a core technology of Microsoft .NET and standardized
by the international standardization organization ECMA
in 2002, provides a virtual execution system (VES) that
supports multiple-languages as well as multiple
platforms. The machine-independent intermediate code
that "write once, and run everywhere," contributes to
expedite the evolution of this VM technology by
minimizing cost and time-to-market of application
development. However, real-time embedded systems
that require timeliness response do not get benefits
using CLI as available implementations of CLI are not
designed for timeliness response.

A real-time embedded CLI environment can
enormously expand the applicability of CLI, not only
for consumer electronics devices but also the embedded
systems for home appliances, telecommunication, and
industry automation. Among VES’s features such as
thread scheduling, exception handling etc., we focus on
a garbage collector to make it deterministic. Our
ultimate goal is to schedule a garbage collector to
ensure applications to meet their deadline and satisfy
memory requests in CLI. Scheduling a garbage collector
primarily requires two conditions. Firstly, the activity of
garbage collection (GC) must be controllable as a
schedulable unit and should not result in a long pause
time. Secondly, the parameters to predict the behavior
of a garbage collector must be derived. These
parameters such as the execution time of garbage

collection, overhead due to incremental GC, amount of
reclaimed memory etc. are a basis of scheduling of GC.

We have implemented an incremental garbage
collector in CLI, running concurrently to be applied for
time-based or work-based scheduling. This WIP report
covers the design of the incremental garbage collector.
Currently, we are gathering experiment data and
developing scheduling algorithms of garbage collection
that guarantee time and space bound.

COMMON LANGUAGE INFRASTRUCTURE
(CLI)
CLI is aimed to make it easy to write components and
applications with multiple languages and for multiple
platforms[1]. It is enabled by defining a rich set of types
to allow CLI-aware languages to interoperate, having
each component carry self-describing information,
translating applications into intermediate language
codes, and providing virtual execution system (VES)
executing intermediate language codes (CIL).

VES, similar to JVM, is an abstract stack-based
machine featuring loader, verifier, JIT compiler,
garbage collector, security system, multiple threads,
exception handling mechanism etc. The ECMA
standard for CLI does not confine a specific garbage
collection mechanism on VES so that the
implementation of a garbage collector does not have any
limitation except awareness of “pinned” type signature.
CLI defines unmanaged pointer type that is not traced
by a garbage collector. A memory object referenced by
unmanaged pointer must be “pinned” to prevent a
garbage collector from moving the object. Unmanaged
pointer referring to managed heap object can happen
when a managed object is passed to managed code that
operates with unmanaged code. However supporting
this feature does not affect the design of a deterministic
garbage collector.

As well as commercial products Microsoft .NET
and WinCE .NET, SSCLI by Microsoft, MONO by
Ximian/Novell, and DotGNU Portable .NET are
available open-source implementations of CLI. C#,
C++, VB, JavaScript, and Java are available as CLI-
compatible languages. So far, there is no
implementation aiming to support time-constrained
embedded applications. Considering the benefits of
using CLI in embedded applications, we believe that
this need will grow soon.

GARBAGE COLLECTOR IN MONO
We have worked on the garbage collector by Boehm et
al. (BDW)[2] that is associated in MONO[3]. BDW,
designed to support languages such as C, C++ etc., is a
conservative mark-sweep GC without cooperation of a
compiler or a runtime system. In order to reduce a pause
time due to GC, BDW supports a mostly parallel GC
(partly incremental), and a parallel but not incremental
collector for multiprocessor systems.

In mostly parallel GC, GC is triggered per
allocation basis and write barrier tracing mutators’ heap
pointer updates is performed by using dirty pages
through virtual memory protection mechanism of
operating system. The write barrier algorithm is that all
heap pages are protected as read-only at an initial step
of mark phase when incremental garbage collection
starts and the pages flagged as dirty due to mutators’
write operations are re-scanned by a garbage collector
in a termination step of mark phase. The advantages
using virtual memory protection is that firstly, it does
not require a compiler to emit write barrier and
secondly, there is no overhead placed on mutators due
to write barrier.

However, this design imposes limitation on
schedulable GC. Firstly, triggering garbage collection
per allocation makes collection work dependent on
allocation patterns of applications. Secondly, using
virtual memory protection for write barrier is a system
dependent feature that limits portability of CLI. Finally,
in the mark phase, an initial step to protect all heap
pages and a termination step to rescan both dirty page
set and root-set may lead to long pause time.

DESIGN OF INCREMENTAL GC
We extended BDW and JIT compiler in MONO to
address the problems described above. Firstly, the
collector is concurrent for either time-based or work-
based scheduling. Secondly, an incremental GC is
implemented by having JIT emit write barrier.

Concurrent Garbage Collector
A traditional incremental GC that performs collection
work at each allocation does not guarantee consistent
collection due to bursty allocation which is general
characteristic of applications [4]. A concurrent garbage
collector, invoked either at the fixed time or at the
threshold of free memory, allows us to apply real-time
scheduling algorithms. The GC invocation interval and
the pause time in each collection cycle, as shown in
Figure 1, is controllable based on applications and

platform requirements.

Incremental Garbage Collector Using Fine-
Grained Write Barrier

We extended BDW GC to perform root-set scan, mark
and sweep incrementally. The write barrier used to trap
mutators’ heap pointer updates is Yuasa’s snapshot-at-
the-beginning algorithm [5].
• Write Barrier: MONO includes JIT compiler that
translates intermediate language codes (CIL) into native
codes. Among about 220 CIL instructions, CIL
instructions that need write barrier due to their store
operation are in Table 1. JIT was modified to generate
the native codes for the instructions that include an
internal call performing write barrier in MONO runtime
system. Applying an indirect function pointer for the
internal calls helps avoid comparison of GC phase each
time. Write barrier in a root-set scan phase is extended
from snapshot-at-the-beginning algorithm.
• New objects allocated in GC cycle: All objects
allocated during GC cycle are marked live to ease a
termination condition and help avoiding a long-pause in
a termination step of mark phase.

CIL Descriptions
Stind.ref Store an object reference into the memor
Stfld Store a value into a field of an object
Stsfld Store a value into a static field of class
Stelem.ref Store a value into a vector element

Table 1 CIL codes that require write barrier in GC

STATUS, FUTURE WORK AND
CONCLUSION

Currently, we have finished the implementation of the
incremental garbage collector and are gathering
experiment data. Based on the experiment, we will
devise efficient scheduling algorithms which guarantee
time and space bounds. At this level, the conservatism
of locating heap pointers and deciding liveness of
pointers in a root-set, and memory fragmentation are not
addressed. However, our incremental garbage collector
can establish an experiment environment to schedule
real-time applications in CLI.

REFERENCES
[1] Common Language Infrastructure, ECMA TC39/TG3, Oct, 2002
[2] Hans-Juergen Boehm et al. Mostly parallel garbage collection.

ACM SIGPLAN Notices, 26(6):157-164, 1991.
[3] Ximian/Novell, MONO, http://www.go-mono.com
[4] David F. Bacon, Perry Cheng, V. T. Rajan: A real-time garbage

collector with low overhead and consistent utilization. POPL
2003

[5] Richard Jones, Garbage Collection: algorithms for automatic
dynamic memory management, John Wiley & Sons, Ltd, 1999.

collection cycle

GC invocation interval

collection cycle

GC invocation interval

Figure 1. GC invocation and scheduling

