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Abstract

This paper describes how to implement the new Ad-
vanced Encryption Standard (AES) using a modu-
lar arithmetic crypto-coprocessor, typically used to
speed up public-key crypto-systems. This idea pro-
vides a fast and secure AES implementation when
a dedicated hardware AES module is not available.
The advantages of using the modular arithmetic co-
processor when compared to a pure software imple-
mentation are:

� much higher execution performance,

� less memory usage, and

� optimized protection against side-channel at-
tacks.

Keywords: AES, Crypto-Coprocessor, Implemen-
tation Issues, Secure Implementation.

1 Introduction

The Advanced Encryption Standard (AES) speci�es
a FIPS-approved (cf. [FIPS]) cryptographic algo-
rithm that is used to safely protect electronic data.
The AES algorithm is a symmetric block cipher that
is able to encrypt (encipher) and decrypt (decipher)
electronic data. The AES algorithm is capable of us-
ing cryptographic keys of 128, 192, and 256 bits to
encrypt and decrypt data blocks of 128 bits. The
new AES (also known as Rijndael, cf. [DR2]) is an
algorithm designed to use only single byte opera-
tions. Therefore, it is an algorithm very suitable

for 8-bit �-processors with only a few kB RAM as
commonly used in todays smart cards. However,
Rijndael is also well suited for 32-bit �-processors
with more RAM and clearly for dedicated hardware
implementations, cf. [Wo, WOL, SMTM]. An op-
timized implementation of the AES algorithm on
an 8051 based �-controller with a 128-bit key takes
less than 1ms @ 15MHz and requires 48 bytes of di-
rectly addressable internal RAM to encrypt a 128
bit data block and a little bit more time to de-
crypt it. Even if this is enough for a large va-
riety of applications, there are some others where
the bit rate achieved with this implementation may
not be enough (for instance in a contactless envi-
ronment) or, there is a demand for a high physi-
cal attack resistancy. On the other hand, dedicated
public-key coprocessors are fast arithmetic copro-
cessors that usually can handle non-modular and
especially modular arithmetic on prime �elds Fp

and especially on �elds of characteristic two F
d
2
, cf.

[NR]. These coprocessors are designed to be very ef-
�cient for RSA and ECC algorithms, but they are
clearly not intended to accelerate the computation
of symmetric key algorithms like DES or AES. How-
ever, some of the operations usually implemented
in a modular arithmetic coprocessor, speci�cally in
those intended for elliptic curve cryptography, are
still useful to implement the AES because some
transformations of the AES are performed on a �eld
F
d
2
. By performing these transformations within the

coprocessor, we can reduce the execution time of
the encryption and decryption algorithms, reduce
the usage of internal RAM memory and protect
the algorithm against various side-channel attacks
[A, AK1, AK2, CJRR, CKN, DR1, DPV, Gu1, Gu2,
KK, Koca], such like timing attacks [KQ, Koch],
power attacks [AG, BS99, CCD, KJJ, Me], electro-
magnetic radiation attacks [SQ] or even fault at-
tacks [ABFHS, BDL, BDHJNT, BS97, BS02, BMM,
JLQ, JPY, JQBD, JQYY, KR, KWMK, Ma, Pai,
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SA, YJ, YKLM1, YKLM2, ZM].

Although many implementations of Rijndael have
been brought into the literature, since this algo-
rithm has won the AES contest, none of these
implementations so far used a public-key crypto-
coprocessor. Therefore, we cannot compare our im-
plementation with any other, and we recommend
to look at cf. [Li] to get an overview of alternative
implementations on other platforms.

In the course of this paper we �rst give some hints
of the utility of our implementation in many smart
card applications. In the next chapter we describe
the minimum requirements for the needed copro-
cessor and give an example of its required architec-
ture. Hereafter, we brie
y describe the AES itself.
The following chapter is the most important one,
as it describes our proposed implementation tech-
nique used for the AES. Finally, some security con-
siderations are discussed around the implementation
presented here and some estimation �gures on the
performance of the implementation are also given.

2 Applications

2.1 Chipcard ICs

Chipcards are mainly used to identify and authen-
ticate a card user to a system. The identi�cation or
authentication protocol is normally based on sym-
metric and asymmetric cryptography. Moreover, all
the data transfers between the Chipcard and the
Terminal are usually protected by a Message Au-
thentication Code (MAC) calculated with a sym-
metric algorithm. Triple DES is the most currently
symmetric algorithm used today in smart cards.
However, the new encryption standard (AES) will
progressively replace the Triple DES within the next
years. Thus, a very eÆcient AES implementation
will be required in those environments where the
transaction time is required to be as short as possi-
ble, as in the case of contactless applications.

2.2 Security ICs

In the area of Security ICs, like a Trusted Plat-
form Module or a SmartUSB �-controller, the use

of a modular arithmetic coprocessor for the AES
implementation described here, will provide an en-
cryption engine, fast enough and very secure for
many applications, like bulk encryption, that with
a standard software implementation could not be
achieved.

2.3 Secure Storage ICs

The main product that can bene�t of the AES im-
plementation described here is the so called multi-
media card also known as a secure storage IC. This
card is typically composed of a large 
ash mem-
ory, a fast I/O interface and some security logic.
When a small CPU and a modular arithmetic co-
processor is incorporated, the AES implementation
described here will provide new features like data
encryption and decryption which will allow to build
new applications like fast and secure memory per-
sonalization. This kind of applications require a fast
encryption/decryption engine, as fast as the I/O in-
terface to avoid a penalty during the execution time
of the application.

2.4 The required modular arithmetic
coprocessor

The modular arithmetic coprocessor must have at
least 6 registers (4 if only encryption is imple-
mented), each of length greater or equal than 16
bytes each. On the other hand, the coprocessor shall
be able to perform the following arithmetic and log-
ical operations:

� Multiplication in F
d
2
, d � 128, of a long register

by an 8-bit value,

� Addition modulo 2 (�, i.e. exclusive OR) of two
long registers,

� Right and Left shifting of a long register,

� Logical AND of two long registers (optional),

� Simultaneous rotation of 4 bytes words (op-
tional).

The following �gure gives an example how such a co-
processor could look like: Here, it is supposed that
the standard CPU can directly operate on the data
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Figure 1: Example of the copprocessor's architec-
ture.

stored on the coprocessors registers but that opera-
tions on these registers are much less eÆcient than
on the standard CPU internal registers, because the
data stored in those registers have to be transferred
to the CPU through some external bus, as these
data are usually organized as a so called XRAM.

3 Description of the Advanced En-

cryption Standard

In this section we brie
y describe the Advanced En-
cryption Standard (AES). For a more detailed de-
scription we refer to [DR2].

AES encrypts plaintexts consisting of lb bytes,
where lb = 16; 24, or 32. The plaintext is organized
as a (4� Nb) array (aij), 0 � i < 4; 0 � j < Nb� 1,
where Nb = 4; 6; 8, depending on the value of lb.
The n-th byte of the plaintext is stored in byte ai;j
with i = n mod 4, j = bn

4
c.

AES uses a secret key, called cipher key, consist-
ing of lk bytes, where lk = 16; 24; or 32. Any
combination of values lb and lk is allowed. The
cipher key is organized in a 4 � Nk array (kij),
0 � i < 4; 0 � j � Nk � 1, where Nk = 4; 6; 8,
depending on the value of lk. The n-th key byte is
stored in byte kij with i = n mod 4, j = bn

4
c.

The AES encryption process is composed of
rounds. Except for the last round, each
round consists of four transformations called

ByteSub; ShiftRow; MixColumn, and AddRoundKey.
In the last round the transformation MixColumn is
omitted. The four transformations operate on inter-
mediate results, called states. A state is a 4�Nb ar-
ray (aij) of bytes. Initially, the state is given by the
plaintext to be encrypted. The number of rounds
Nr is 10; 12, or 14, depending on maxfNb; Nkg. In
addition to the transformations performed in the
Nr rounds there is an AddRoundKey applied to the
plaintext prior to the �rst round. We call this the
initial AddRoundKey.

Next, we are going to describe the transformations
used in the AES encryption process. We begin with
AddRoundKey.

The transformation AddRoundKey The input to
the transformation AddRoundKey is a state (aij), 0 �
i < 4; 0 � j < Nb, and a round key, which is an array
of bytes (rkij), 0 � i < 4; 0 � j < Nb. The output
of AddRoundKey is the state (bij); 0 � i < 4; 0 � j <
Nb, where

bij = aij � rkij :

The round keys are obtained from the cipher key by
expanding the cipher key array (kij) into an array
(kij), 0 � i < 4; 0 � j � Nr � Nb, called the expanded

key. The round key for the initial application of
AddRoundKey is given by the �rst Nb columns of the
expanded key. The round key for the application
of AddRoundKey in the m-th round of AES is given
by columns mNb; : : : ; (m+1)Nb�1 of the expanded
key, 1 � m � Nr.

The transformation ByteSub Given a state
(aij), 0 � i < 4; 0 � j < Nb, the transformation
ByteSub applies an invertible function S : f0; 1g8 !
f0; 1g8 to each state byte aij separately. The exact
nature of S is of no relevance for the implementa-
tion described later. We just mention that S is non-
linear, and in fact, it is the only non-linear part of
the AES encryption process. In practice, S is often
realized by a substitution table or S-box.

The transformation ShiftRow The transforma-
tion ShiftRow cyclically shifts each row of a state
(aij) separately to the left. Row 0 is not shifted.
Rows 1; 2; 3 are shifted by C1; C2; C3 bytes, respec-
tively, where the values of the Ci depend on Nb.



The transformation MixColumn The transfor-
mation MixColumn is crucial to the kind of
our special implementation. The transformation
MixColumn operates on the columns of a state sepa-
rately. To each column a �xed linear transforma-
tion is applied. To do so, bytes are interpreted
as elements in the �eld F28 . As is usually done,
we will denote elements in this �eld in hexadeci-
mal notation. Hence 01; 02 and 03 correspond to
the bytes 00000001; 00000010, and 00000011, re-
spectively. Now MixColumn applies to each row of
a state the linear transformation de�ned by the fol-
lowing matrix

2
664

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

3
775 : (1)

One complete round of the AES encryption proce-
dure is schematically shown in �gure 2.

Figure 2: AES round description, cf. [Sa].

The operation xtime The multiplications in
F28 necessary to compute the transformation
MixColumn are of great importance to our imple-
mentation. Therefore we are going to describe them
in more detail. First we need to say a few words
about the representation of the �eld F28 . In AES
the �eld F28 is represented as

F28 = F2 [x]=(x
8 + x4 + x3 + x+ 1): (2)

That is, elements of F28 are polynomials over F2 of
degree at most 7. The addition and multiplication
of two polynomials is done modulo the polynomial
x8 + x4 + x3 + x + 1. Since this is an irreducible
polynomial over F2 , (2) de�nes a �eld. In this rep-
resentation of F28 the byte a = (a7; : : : ; a1; a0) cor-
responds to the polynomial a7x

7+ � � � a1x+a0. The

multiplication of an element a = (a7; : : : ; a1; a0) in
F28 by 01; 02, and 03 is realized by multiplying the
polynomial a7x

7 + � � � a1x + a0 with the polynomi-
als 1; x; x + 1, respectively, and reducing the result
modulo x8 + x4 + x3 + x+ 1. Hence

01 � a = a

03 � a = 02 � a+ a:

We see that the only non-trivial multiplication
needed to multiply a column of a state by the ma-
trix in (1) is the multiplication by 02. Following the
notation in [DR2] we denote the multiplication of
byte a by 02 by xtime(a). The crucial observation
is that xtime(a) is simply a shift of byte a, followed
in some cases by an xor of two bytes. More precisely,
for a = (a7; : : : ; a0)

xtime(a) =

8>>>><
>>>>:

(a6; : : : ; a0; 0);
if a7 = 0

(a6; : : : ; a0; 0)� (0; 0; 0; 1; 1; 0; 1; 1);
if a7 = 1

This �nishes our brief description of the AES en-
cryption procedure.

In a pure software implementation of the algorithm
on an 8051 based �-controller these transformations
are performed one after the other within the CPU
using 48 bytes of directly addressable internal RAM,
and taking roughly 12000 clock cycles to encrypt a
128 bit data block with a 128-bit key. The decryp-
tion algorithm takes about 30% more time than the
cipher and requires at least the same bytes of inter-
nal RAM resources. This is due to the fact that the
software implementation of the inverse MixColumn

transformation used for decryption is less eÆcient
than the MixColumn transformation used for encryp-
tion.

4 The public-key coprocessor based

AES implementation

The formerly mentioned type of public-key copro-
cessor is actually useful to improve the performance
of the following transformations of the AES cipher:

� MixColumn,

� inverse MixColumn,



� KeyExpansion and

� AddRoundKey.

Other transformations like the ByteSub and
ShiftRow are performed inside the standard CPU
and therefore remain unchanged. The reason of not
using the coprocessor to accelerate these two last
transformations is the following. The fastest way
of performing the ByteSub transformation is by the
use of a look-up table (the so called S-Box) contain-
ing 256 8-bit values. Because both of them, table
indices and table contents are 8-bit values, the 8-bit
CPU is the most suitable unit to perform this table
access. Nevertheless, we advice the reader to care-
fully consult our section 5 on the physical security
of the AES.

On the other hand, the ShiftRow transformation
can be embedded into the ByteSub transformation
in such a way that there is no performance loss. The
next �gure describes the execution parts executed
in the CPU and the other ones executed within the
coprocessor:

Key Expansion

MixColumns

AddRoundKeySubBytes +
ShiftRows

CPU COPROCESSOR

X-BUS

Key

Round key

Text

State

State

State

AddRoundKey

State

State

Figure 3: Execution of the AES transformations .

4.1 The MixColumn transformation

The multiplication of columns (MixColumn) is based
on the xtime operation as de�ned within the AES
speci�cation. It multiplies a byte of the so called
state by 2 modulo the irreducible polynomial x8 +
x4+x3+x+1. This operation is usually performed
on a byte by left shifting the byte (multiplication by
2) and, in case of over
ow, xoring (addition modulo
2) with the hexadecimal value 0x1b.

The MixColumn transformation requires matrix
multiplication in the �eld F

8
2 . In an 8-bit CPU, this

can be implemented in an eÆcient way for each col-
umn as follows:

y0 = 02 � x0 � 03 � x1 � 01 � x2 � 01 � x3

y1 = 01 � x0 � 02 � x1 � 03 � x2 � 01 � x3

y2 = 01 � x0 � 01 � x1 � 02 � x2 � 03 � x3

y3 = 03 � x0 � 01 � x1 � 01 � x2 � 02 � x3;

where � represents the xtime operation. After re-
ordering the equations we get:

y0 = 02 � x0 � 03 � x1 � x2 � x3

y1 = 02 � x1 � 03 � x2 � x3 � x0

y2 = 02 � x2 � 03 � x3 � x0 � x1

y3 = 02 � x3 � 03 � x0 � x1 � x2

The xtime operation can be performed inside the
coprocessor on the 16 bytes of the state in parallel
via the following formula:

xtime(state) = ((state&m2) << 1)�

(((state&m1) >> 7) �m3);

where m1 = 0x8080:::80 (16 bytes), m2 =
0x7f7f:::7f (16 bytes) and m3 = 0x1b. Here, �
denotes the multiplication operation in F

8
2 , � is the

addition modulo 2, & the AND operation and <<
and>> are the bit-left and bit-right shift operations
respectively.

The xtime operation itself can be implemented in-
side the coprocessor with only two temporary regis-
ters, as shown below:

t1 = state&m1

t1 = t1 >> 7

t1 = t1 �m3

t2 = state&m2

t2 = t2 << 1

t1 = t1 � t2

If the AND operation is not supported by the co-
processor, it has to be done in the standard CPU
before loading the state into the coprocessor's reg-
ister. Then, one has to load the result of the AND
operations in both t1 and t2. Based on the pre-
vious de�nition of the xtime operation, the whole
MixColumn transformation can be de�ned to oper-
ate on the 16 bytes of the state in parallel. The



implementation is based on the previous de�nition
of the xtime operation:

t1 = xtime(state)

t2 = t1 � state

t2 = RotWord(t2)

t1 = t1 � t2

t2 = RotWord(state)

t2 = RotWord(t2)

t1 = t1 � t2

t2 = RotWord(t2)

state = t1 � t2

The total number of registers needed for the imple-
mentation of the MixColumn transformation in the
coprocessor is 3, two temporal registers for the in-
termediate results and another for the state.

The RotWord operation as de�ned in the AES spec-
i�cation has to be performed on every 4 bytes of
the state independently. If it is not supported by
the coprocessor, this operation must be done by the
standard CPU, accessing the internal coprocessor's
registers.

4.2 The inverse MixColumn transforma-
tion

The inverse MixColumn transformation requires also
a matrix multiplication in the �eld F

8
2
. In an 8-bit

CPU, this can be implemented in an eÆcient way
for each column as follows:

y0 = 0e � x0 � 0b � x1 � 0d � x2 � 09 � x3

y1 = 09 � x0 � 0e � x1 � 0b � x2 � 0d � x3

y2 = 0d � x0 � 09 � x1 � 0e � x2 � 0b � x3

y3 = 0b � x0 � 0d � x1 � 09 � x2 � 0e � x3:

After reordering the equations we get:

y0 = 0e � x0 � 0b � x1 � 0d � x2 � 09 � x3

y1 = 0e � x1 � 0b � x2 � 0d � x3 � 09 � x0

y2 = 0e � x2 � 0b � x3 � 0d � x0 � 09 � x1

y3 = 0e � x3 � 0b � x0 � 0d � x1 � 09 � x2:

As for the MixColumn, the inverse transformation
(needed for decryption) can also be de�ned to op-
erate on the 16 bytes of the state in parallel. The

implementation is based on the previous de�nition
of the xtime operation:

t1 = xtime(state)

t2 = xtime(t1)

t3 = xtime(t2)

t4 = t1 � t2 � t3

t2 = state� t2 � t3

t1 = state� t1 � t3

t3 = state� t3

t1 = RotWord(t1)

t2 = RotWord(RotWord(t2))

t3 = RotWord(RotWord(RotWord(t3)))

state = t1 � t2 � t3 � t4

The total number of registers needed for the imple-
mentation of the inverse transformation in the co-
processor is 5, where 4 temporal registers are used
for intermediate results and one other register for
the state itself.

Another way to implement the inverse MixColumn

transformation is by de�nition of the following two
new operations:

xtime4(state) = ((state&m5) << 2)�

(((state&m4) >> 6) �m3)

xtime8(state) = ((state&m7) << 3)�

(((state&m6) >> 5) �m3);

where m4 = 0xc0c0:::c0 (16 bytes), m5 =
0x3f3f:::3f (16 bytes), m6 = 0xe0e0:::e0 (16
bytes), m7 = 0x1f1f:::1f (16 bytes) and m3 =
0x1b. Therefore, the implementation of the inverse
MixColumn transformation can be rede�ned as fol-
lows:

t1 = xtime(state)

t2 = xtime4(state)

t3 = xtime8(state)

t4 = t1 � t2 � t3

t2 = state� t2 � t3

t1 = state� t1 � t3

t3 = state� t3

t1 = RotWord(t1)

t2 = RotWord(RotWord(t2))

t3 = RotWord(RotWord(RotWord(t3)))

state = t1 � t2 � t3 � t4

The advantage of this second implementation is that
the operations xtime, xtime4 and xtime8 can be



calculated in parallel from the state, avoiding the
sequence of the �rst implementation. M oreover, in
the case that the AND operation is not available
within the coprocessor, this second solution allows
to precompute all the AND values within the stan-
dard CPU before loading the state into the copro-
cessor.

4.3 The Key Expansion

The 16, 24 or 32 bytes of the key (depending on
the key length) are loaded into the Key register1 of
the coprocessor (Key1 and Key2 registers for 256-
bit keys). Then, the next round key bytes are cal-
culated with the following sequence of operations.

For a 128-bit key, perform the following sequence,
and for each intermediate round do:

t1 = Rcon� ByteSub(RotWord(Key))

Key = Key� t1

t1 = Key

t1 = t1 >> 32

Key = Key� t1

t1 = t1 >> 32

Key = Key� t1

t1 = t1 >> 32

Key = Key� t1:

The RotWord, ByteSub operations are performed by
the standard CPU on the 4 rightmost bytes of the
Key register, then storing the result into the 4 left-
most bytes of t1 and clearing the other bytes. Rcon
is the 4-byte constant de�ned within the AES spec-
i�cation.

For a 256-bit key perform the following sequence,

1Mapping the encryption or decryption key to the Key

register is straightforward, bytes a0; a1; :::; a15 of the key are

mapped one to one to bytes k0; k1; :::; k15 of the Key register

respectively.

and for each intermediate \even" round do:

t1 = Rcon� ByteSub(RotWord(Key2))

Key
1

= Key
1
� t1

t1 = Key
1

t1 = t1 >> 32

Key
1

= Key
1
� t1

t1 = t1 >> 32

Key
1

= Key
1
� t1

t1 = t1 >> 32

Key
1

= Key
1
� t1

while every intermediate \odd" round (except round
1) is done as:

t1 = ByteSub(Key1)

Key
2

= Key
2
� t1

t1 = Key2

t1 = t1 >> 32

Key2 = Key2 � t1

t1 = t1 >> 32

Key2 = Key2 � t1

t1 = t1 >> 32

Key2 = Key2 � t1

For 196-bit keys, the sequence gets more compli-
cated as in that case, new round key bytes are gen-
erated within a window of 6 bytes, but round key
bytes should be delivered at a rate of 4 bytes. Ba-
sically, the process to generate the new round key
bytes is similar to that for 128 bit keys, but yet
longer registers (24 bytes long) and/or an additional
temporary register might be needed.

Totally, the number of registers needed for the im-
plementation of the Key Expansion transformation
within the coprocessor is 2 (or at maximum 3 for
keys longer than 16 bytes).

4.4 The AddRoundKey transformation

This transformation is performed by simply adding
the state and the key modulo 2 inside the coproces-
sor:

state = Key� state:

No temporal register is therefore needed. The Key
register used will be Key1 or Key2 in the case of 256-
bit keys, depending on the round number (Key1 for
\even" rounds and Key2 for \odd" rounds).



5 Security Considerations

Although there is a large variety of possible physi-
cal attacks on the AES, cf. [AG, BS99, BS02, CJRR,
DR1, KQ, KWMK, Me, YT], the xtime operation
is clearly the most critical one in the AES algo-
rithm, at least with respect to physical security or so
called side-channel attacks. Namely, this operation
involves a multiplication that is subject to timing
and fault attacks (see [KQ, BS02]). We also stress
that the recently developed fault based susceptibil-
ity due to [BS02] cannot be avoided by the simple
dedicated fault-tolerant AES hardware as proposed
by [KWMK].

However, thanks to the implementation described
here, the aforesaid timing attack on the xtime op-
eration doesnt work. This is due to the fact that the
timing behaviour of modern crypto coprocessors is
independent of its operands, which indeed avoids a
timing attack vulnerability of our implementation.

Moreover, by performing the xtime operation on 16
bytes in parallel we make fault attacks very diÆcult
to achieve, because we can use a fault in the calcu-
lation to 
ip a bit, but the 
ipped bit can be any
one of the 128 bits of the state or temporary vari-
able. Another critical part of the implementation
described here might be the transfer of data through
the so called X-BUS, the bus that connects the CPU
and the coprocessor. This transfer of data is more
signi�cant when the AND and Rotate operations
are not supported by the coprocessor and therefore
have to be performed within the standard CPU. The
bus contents could then be tampered via an elec-
tronic microscope, a focused ion beam, or could be
revealed through measuring the power consumption
or even by an electromagnetic �eld analysis.

Fortunately, this X-BUS is by some �-controller
ICs vendors protected by hardware and/or software
mechanisms. Among the hardware countermeasures
there are active shields or random bus scrambling
techniques available on some existing high security
m-controller ICs. Last generation of those high
securit�-controller ICs are designed using a spe-
cial dual rail security logic, cf. [MAK, MACMT].
This logic not only ensures that both, a \0" and a
\1" have the same Hamming weight, but also that
changes between a logical \0" and a logical \1" are
not distinguishable by an adversary.

As software measures some masking and encryption

techniques could be applied to the data before being
transferred, both in the CPU and in the coprocessor.
However, these measures may have a signi�cant im-
pact on the overall performance of the algorithm,
which makes the aforesaid hardware countermea-
sures the practically preferred choice.

6 Performance Estimation

An implementation of the AES encryption algo-
rithm with a key length of 128 bits on In�neons
SLE66P (8051 based) security controller family, cf.
[Inf2], combined together with In�neons recently de-
veloped modular arithmetic coprocessor Spiridon,
cf. [Inf1] (which has no AND or RotWord operation),
is approximately two times faster than an optimized
8051 based implementation, and requires only 16
bytes of internal RAM memory. Most importantly,
this implementation greatly bene�ts from the high
physical attack security o�ered by the Spiridon co-
processor, which will be described in another publi-
cation.

However, we expect an implementation using an op-
timal modular arithmetic coprocessor with all the
operations described at the beginning of the present
paper by at least a factor of four faster than the im-
plementation on In�neons Spiridon.
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