
MobiNet: A Scalable Emulation Infrastructure for Ad Hoc and Wireless
Networks

Priya Mahadevan
UC San Diego

pmahadevan@cs.ucsd.edu

Adolfo Rodriguez
IBM, RTP and Duke University

razor@cs.duke.edu

David Becker
Duke University

becker@cs.duke.edu

Amin Vahdat
UC San Diego

vahdat@cs.ucsd.edu

Abstract
The current state of the art in evaluating applications and com-
munication protocols for ad hoc wireless networks involves ei-
ther simulation or small-scale live deployment. While larger-
scale deployment has been performed, it is typically costly and
difficult to run under controlled circumstances. Simulation al-
lows researchers to vary system configurations such as MAC
layers and routing protocols. However, it requires the dupli-
cation of application, operating system, and network behav-
ior within the simulator. While simulation and live deploy-
ment will clearly continue to play important roles in the de-
sign and evaluation of mobile systems, we present MobiNet, a
third point in this space. In MobiNet, the communication of
unmodified applications running on stock operating systems is
subject to the real-time emulation of a user-specified wireless
network environment. MobiNet utilizes a cluster of emulator
nodes to appropriately delay, drop or deliver packets in a hop
by hop fashion based on MAC-layer protocols, ad hoc routing
protocols, congestion, queuing, and available bandwidth in the
network. MobiNet infrastructure is extensible, facilitating the
development and evaluation of new MAC layers, routing pro-
tocols, mobility and traffic models. Our evaluations show that
MobiNet emulation is scalable and accurate while executing
real code, including video playback.

1 Introduction

Wireless mobile systems have become increasingly pop-
ular in the past few years. Of particular interest has been
the proliferation of ad-hoc wireless networking where
mobile nodes form peer relationships with one another
to relay information through the network.

One key challenge in this area is evaluating these pro-
tocols and applications in a scalable and accurate man-
ner. It is difficult and costly to deploy development soft-
ware on a large number of real mobile nodes. Further,
live deployment makes it difficult to obtain reproducible
results. To overcome these limitations, researchers have
developed simulation engines to mimic the behavior of
mobile systems by modeling packet loss, queuing de-

lays and MAC-layer behavior. Application code is typ-
ically re-written to conform to the simulation environ-
ment. This approach requires increased development ef-
fort and also leads to loss in accuracy as the behavior of a
unmodified application running over a real OS, network
stack and hardware is lost. Finally, accurate simulation
environments face significant scalability limitations, of-
ten topping out at a few tens of mobile wireless hosts.

MobiNet is an emulation environment designed to
overcome some of the accuracy and scalability chal-
lenges in mobile evaluation. The goal of our work is
to allow users to evaluate the behavior of their wireless
systems under a range of conditions in a controlled, re-
producible environment. System aspects that we would
like to allow users to control include MAC layers, routing
protocols, mobility patterns and traffic models. Mobi-
Net supports flexible deployment of the above models,
thereby allowing researchers to study and improve the
performance of wireless applications and protocols.

To support the above types of experiments, we de-
signed MobiNet to emulate a target mobile network on a
scalable LAN cluster with gigabit interconnect, enabling
researchers to deploy unmodified IP-based software and
subject it to faults, varying network conditions, differ-
ent routing protocols, and MAC layer implementations.
Edge nodes running user-specified OS and application
software are configured at the IP-layer to route packets
through one or more MobiNet core nodes that cooperate
to subject the traffic to the bandwidth, interference pat-
terns, congestion, and loss profile of the target network
topology.

We must address several key challenges to successfully
emulate large-scale multi-hop wireless networks. Behav-
ior of MAC layer (e.g. various flavors of 802.11) sig-
nificantly impacts the performance of wireless networks.
Node mobility plays an important role in wireless envi-
ronments. Ad hoc routing protocols are critical for relay-
ing packets. Therefore our emulation supports: i) vari-
ous MAC layers ii) routing protocols iii) node movement

WitMeMo ’05: International Workshop on Wireless Traffic Measurements and Modeling USENIX Association 7

patterns. Each of the above layers must be deployed in
a modular manner, allowing users flexibility and control
over their experiments. Further, we would like to struc-
ture our emulation in a scalable, accurate and extensible
manner. Our scalability tests show that a single MobiNet
core can forward up to 89,000 packets per second. Us-
ing just one MobiNet core and 2 physical edge nodes, we
have been able to emulate a 200-node topology, forward-
ing application packets in real time. Along with scalabil-
ity, MobiNet also provides good accuracy. We validated
our MAC and routing protocols against other simulators
and found that our results compared favorably with those
obtained from ns2. We also present results from running
unmodified binaries (video playback) that demonstrate
the power and flexibility of our system.

The remainder of this paper is organized as follows:
Section 2 describes the details of the MobiNet frame-
work. We briefly describe MobiNet’s accuracy and scal-
ability in section 3. Section 4 describes our experiences
in deploying real unmodified applications over MobiNet.
We discuss related work in section 5 and present our con-
clusions in section 6.

2 The MobiNet Framework

Figure 1: MobiNet Architecture

We borrowed some basic design principles from the
publicly available ModelNet [10], an emulation environ-
ment for wired and static networks. However, Mobi-
Net required a complete reimplementation of the system
given the inherent differences between wired and wire-
less networks. The MobiNet architecture is composed of
edge nodes and core nodes as shown in Figure 1. Edge
nodes in MobiNet can run arbitrary architectures and op-
erating systems and could even be a combination of dif-
ferent devices such as laptops, PDAs, etc. Our current
experiments have been performed on edge nodes run-
ning linux. They run native IP stacks and function as
they would in real environments with the exception that
they are configured to route IP traffic through MobiNet
cores. MobiNet core nodes run a modified version of
FreeBSD to emulate topology-specific and hop-by-hop
network characteristics.

Target applications run on edge nodes as they would in
a real setting. However, to decrease the number of client

Figure 2: MobiNet Modules

(edge) machines required for large-scale evaluations, our
architecture allows for Virtual Edge Nodes (VNs). VNs
enable the multiplexing of multiple application instances
on a single client machine, each with its own unique
IP address. Since MobiNet clients use internal IP ad-
dresses (10.*), the number of clients that can be multi-
plexed onto an edge node is not limited by IP address
space limitations, but rather by the amount of computa-
tional resources (e.g. threads, memory) that the target
application uses. All VNs are configured to route their
traffic through one of the cores. The MobiNet cores em-
ulate wireless network behavior at multiple layers while
eventually routing packets to the edge node hosting the
destination VN.

Emulation at the core involves capturing node move-
ment patterns, dynamic routing, and MAC layer effects
such as collisions and capture. To this end, we have a
mobility module, routing module and MAC layer mod-
ule in the MobiNet core. The physical layer also plays
an important role in wireless networks, hence we have
support for free space propagation model and two-ray
ground reflection model[1]. By dividing mobile emu-
lation behavior under functional lines, MobiNet’s mod-
ules are more easily developed and replaced. This al-
lows experiments to use different combinations of mod-
ules, leading to a more flexible and powerful emulation
framework. Figure 2 depicts the interactions between
the different modules in MobiNet. The mobility model
is implemented as a user level application that down-
loads new node movement files into MobiNet core’s ker-
nel at user specified time intervals. The routing module
uses this information to find new routes when existing
routes become stale. Once a packet enters the system,
it is handed up by the ipfw module in the FreeBSD ker-
nel to the MobiNet module. The routing module within
MobiNet is now responsible for finding a path in order
to send this packet to its destination. The path is ba-
sically a list of nodes through which the packet has to
traverse before reaching its destination. Once the path
has been obtained, the MAC-layer module emulates the
packet according to the specified attributes of each pipe
in the path. Pipes in MobiNet correspond to the trans-

WitMeMo ’05: International Workshop on Wireless Traffic Measurements and Modeling USENIX Association8

mission capacity of their associated nodes. The packet
traverses through every intermediate node’s pipe, thereby
being subjected to queuing delays and congestion at ev-
ery node. Once the packet successfully reaches the last
hop in the path, the packet is sent to the virtual node
hosting the packet’s destination. Thus, transmitting a
packet from source A to destination B via nodes C, D,
and E will involve sending the packet through pipes A,
C, D and E before finally relaying it to destination B.
Each pipe maintains a drop-tail queue for storing pack-
ets that need to be transmitted from the corresponding
node. All attributes of pipes such as bandwidth, queue
size and loss rate are user-configurable and can be down-
loaded into the core’s kernel using the sysctl function call
in FreeBSD.

MobiNet emulation is a three step operation: topol-
ogy creation, assignment of VNs and pipes to hosts and
cores respectively, and application execution. A user cre-
ates a desired topology, MobiNet distributes pipes asso-
ciated with each node in the topology across the cores to
distribute emulation load, assigns VNs in our emulated
topology to edge nodes, and configures and executes the
applications in the MobiNet emulation framework. We
now describe each of MobiNet’s modules in more detail.
2.1 Mobility
The mobility module is a user-level application that gen-
erates various node positions and neighbor lists consist-
ing of nodes within a node’s transmission range. This
information is downloaded in real time into the kernel of
the MobiNet cores at regular user-specified intervals. Al-
ternatively, we could calculate these positions and neigh-
bor lists in real time within the core’s kernel. Doing so,
however, would cause significant overhead since floating
point operations would be required in the kernel.

One interesting parameter in MobiNet’s emulation is
that of the interval used to refresh node positions within
the core’s kernel. If the interval is too high, valuable ker-
nel processing is wasted in reading new node coordinates
for values that have changed little. If it is too low, it leads
to inaccurate results. MobiNet attempts to bridge the gap
between kernel performance and accuracy by choosing
an interval value that provides good performance and ac-
curate results under a wide variety of emulations. We
found that setting the node position refresh rates to 0.5
seconds provides good results for our test scenarios, with
node velocities up to 20 m/s. We stress that the refresh
interval is user configurable and node coordinates can be
downloaded into the kernel at a much lower granularity.

Our current mobility application supports the random
waypoint mobility model described in [1], though Mobi-
Net can use arbitrary movement models. In our appli-
cations, users specify the topology size, the duration of
the experiment, the maximum speed of nodes, the move-
ment pause time, and the interval of the desired output.

The mobility application creates time-indexed movement
files that include the current positions of each node and
the neighbor lists for each node. These movements files
can be read by the MobiNet core during the execution of
the experiment.

2.2 MAC Layer Emulation
Our modular emulation approach is amenable to a wide
range of models for the MAC layer. We implemented our
MAC layer based on IEEE’s 802.11 standard specifica-
tion for RTS-CTS-Data-ACK in MobiNet. The details of
our implementation are described in [5]. The physical
layer plays an important role in the performance and en-
ergy consumption of mobile and wireless systems. The
free space model and the two-ray model predict the re-
ceived power as a deterministic function of distance [1].
Our physical link model supports free space propagation
and two-ray ground reflection model [1]. Power level
at which packets are received determines if one or both
packets are dropped due to noise or if one packet is cap-
tured by the other.

2.3 Dynamic Routing
As with all other MobiNet modules, the routing layer is
implemented as a pluggable module in the FreeBSD ker-
nel. The MobiNet core makes a call to this routing mod-
ule to retrieve paths for the packets that it receives. We
have implemented the Dynamic Source Route (DSR) [3]
protocol in the MobiNet core. While we chose DSR in
our current implementation, DSR can be replaced with
any other ad-hoc routing protocol such as AODV [8],
DSDV [9], or TORA [7]. Our generic design and the
fact that each component in MobiNet is pluggable and
not dependent on other components enable us to imple-
ment a broad range of routing modules in the kernel with
relative ease. Detailed implementation is described in
[5].

3 Evaluation

In this section, we briefly describe our experiences us-
ing MobiNet for evaluating ad hoc wireless applications.
Our evaluation focused on testing MobiNet for scalabil-
ity as well as accuracy.

We have written and tested a simple application in na-
tive TCP/IP and in the ns2 network simulator to enable
comparisons between MobiNet emulation and ns2 sim-
ulation. The application establishes simple constant bit
rate (CBR) streams between senders and receivers using
UDP. Each sender sends data to exactly one receiver. Our
CBR communications consists of 64-byte packets sent
from each node (sender) at the rate of 4 packets per sec-
ond. While it is impossible to guarantee that both ver-
sions function identically, the simplicity of our test ap-
plication leads to it exhibiting very similar behavior in
both environments. Using this application, we have ex-

WitMeMo ’05: International Workshop on Wireless Traffic Measurements and Modeling USENIX Association 9

ecuted a number of experiments to evaluate the perfor-
mance, scalability, and accuracy of the different modules
in MobiNet. The goal of our accuracy and routing over-
head tests were to reproduce the experiments described
in [1].

In all of our experiments, MobiNet edge nodes con-
sisted of Pentium 4 2.0 GHz PCs with 512 MB memory
running linux version 2.4.2. We use a single Pentium 3
dual processor with 2 GB memory supporting FreeBSD
version 4.5 as our MobiNet core. Our experiments on
ns2 were conducted on a machine similar to our edge
nodes. MobiNet provides various packet statistics that
enable us to determine the number of packets sent, pack-
ets dropped due to MAC collision, and other useful met-
rics. Likewise, we make use of ns2 trace files to extract
these metrics.

With our mobility application, we simulated random
waypoint mobility using various seeds and pausetime
values, resulting in different movement patterns. For
most of our experiments, we specified a neighbor-refresh
interval of 0.5 seconds. We found that our interval of 0.5
seconds gives us comparable results with lower intervals
such as 0.2 seconds and also with the continuous move-
ment pattern that ns2 supports.

3.1 Core Performance
One of the experiments we have executed, tested the abil-
ity of the MobiNet core to process packets. The goal was
to find the number of packets per second the MobiNet
core router could emulate without saturation.

The setup comprised of 200 VNs that were distributed
across 2 edge nodes (100 virtual IP addresses mapped to
each edge node). We disabled the mobility module to
decrease the overhead due to DSR. Thus DSR is invoked
only once for a source-destination combination. Once a
route to a particular destination has been found by the
routing module, the route does not change. A sender ap-
plication was associated with every VN on one edge ma-
chine, while a listener was associated with every VN on
the other edge machine. Each sender application sent 64-
byte UDP packets at a constant bit rate to a specific lis-
tener, thereby accounting for 100 flows from the sender
edge machine to the lister edge machine. Each source
sent packets in exactly 1 hop to exactly one destination
which was also the node’s sole neighbor. Thus, there
were no packet collisions. We also set the DIFS and SIFS
values in the 802.11 specifications to zero as the goal
was to gauge the maximum number of packets that could
be sent through a single MobiNet core. MobiNet core
runs with a clock resolution of 10Khz, meaning that we
are able to accurately emulate each packet hop to within
0.1 ms accuracy. Even for end-to-end path lengths of 10
hops, packet transmission delays are accurate to within 1
ms, sufficient for our target wireless scenarios, especially
when considering end-to-end transmission, propagation,

and queuing delays. This accuracy holds up to and in-
cluding the peak emulation rate because MobiNet’s emu-
lation runs at the kernel’s highest priority level. We mea-

CPU Pkts/sec Pkts/sec Pkts/sec
utilization forwarded forwarded forwarded
at core for 1 hop for 3 hops for 5 hops
50% 43.5K 25K 16K
70% 63.5K 38K 23K
90% 78K 47K 30K
100% 89K 50K 35K

Table 1: Forwarding capacity at the Core

sured throughput in terms of packets per second and CPU
utilization at the core for different packet sending rates.
We ran similar tests but with different topologies, so that
each packet from the sender must traverse 3 hops and 5
hops respectively before reaching the destination. Again,
we ensured that there were no collisions and nodes just
had their communication partners as their neighbors. As
the number of hops increased, we found that the total
number of packets that the core could forward per sec-
ond decreased as it now had to perform more work per
packet. We summarize our results in Table 1.

3.2 MAC layer and routing accuracy
Validating the behavior of our MAC layer implemen-
tation is difficult as no known emulation or simulation
technique can accurately predict the bit error rates or
radio interference under arbitrary deployment scenarios.
To gain some baseline confidence in the accuracy of our
802.11 MAC model, we conduct micro-benchmarks to
compare MobiNet’s MAC layer performance with that
of ns2 for a variety of topologies and packet transmis-
sion rates. Since the packet transmission rate is depen-
dent upon the timing and rate of collisions, we hypoth-
esize that if MobiNet and ns2 deliver the same packet
throughput under a range of conditions, the packet col-
lision and backoff behavior is likely to be similar. We
experimented with several topologies and packet sending
rates. For each of our topologies, we found that MobiNet
and ns2 had similar packet delivery ratio. Our detailed
results for different topologies are described in [5].

The next step was to validate routing accuracy in our
emulator. We achieved this by comparing experimental
results obtained from MobiNet to that from ns2 for our
simple CBR communication. We used the 802.11 MAC
protocol and DSR implementations available in ns2. Us-
ing our mobility model, we generated movement files
that were used by ns2 and MobiNet. We varied the max-
imum speed and pause time in our experiments and for
each of the above, we found that MobiNet’s packet de-
livery ratio matches that of ns2. We also compared the
number of control packets transmitted by our DSR im-

WitMeMo ’05: International Workshop on Wireless Traffic Measurements and Modeling USENIX Association10

plementation with that of ns2 in the above experiments
and again found that MobiNet compared favorably with
ns2. Again the experiments and results are described in
[5]. All the above tests helped validate the MAC and
routing accuracy of our emulator.

3.3 Scalability
Given the accuracy of our emulation experiments, we
next consider the scalability of our emulation environ-
ment. One of the main benefits of MobiNet over using
a simulator such as ns2 is experiments can be run in re-
altime. Simulators that do not run in realtime have an
advantage that however complex the experiment, it even-
tually completes. On the other hand emulators that run
in realtime find the load too great at some stage. How-
ever, for typical experiments, MobiNet is capable of for-
warding up to 89,000 packets per second and thus has a
distinct advantage over ns2 with respect to time taken to
complete experiments upto this capacity.

To quantify this benefit, we compare the time required
to run experiments in ns2 and MobiNet as a function of
numbers of CBRs. We used a 200 node topology with
nodes distributed randomly in a 3000 meter by 600 me-
ter rectangle (resulting in the same node density as our
previous experiments). For MobiNet, the 200 nodes were
distributed across 2 MobiNet edge nodes. The ns2 exper-
iments were run on a single machine with the same con-
figuration as the MobiNet edge node. We disabled node
mobility in this case to reduce the overhead due to find-
ing routes with DSR. Here, DSR only needs to find routes
to destinations once (at the start of the experiment). We
varied the number of CBR sources from 10 to 40, with
each sender once again transmitting 64-byte packets at
the rate of 4 packets per second. Each node sent a total
of 1200 packets. Figure 3 shows the computation time
necessary to execute the experiment for MobiNet emu-
lation and ns2 simulation. This is the time it takes for
the experiment to complete multiplied by the number of
machines used in the experiment. In real time, this ex-
periment takes 5 minutes, as it takes each CBR source
300 seconds to transmit its share of packets. As a result,
MobiNet using 3 machines (2 edges and 1 core) emu-
lates the experiment in 15 minutes. In contrast, ns2 sim-
ulation time of the experiment increases linearly with the
number of CBR nodes. In the case of 40 nodes transmit-
ting, the ns2 simulation lasted 134.5 minutes, compared
to MobiNet’s 15-minute emulation.

4 Deploying Real Applications

In this section we demonstrate the utility and general-
ity of our infrastructure by deploying and evaluating real
unmodified code, a video player over MobiNet. We used
XAnim as our sample application. XAnim is a program
that plays a wide variety of animation, audio and video

0

20

40

60

80

100

120

140

10 15 20 25 30 35 40

#
of

m
ac

hi
ne

s
*

Ti
m

e
in

m
in

ut
es

of CBRs

ns
MobiNet

Figure 3: Scalability in MobiNet vs. ns2 as a function of time

formats on Unix X11 machines. Running the same appli-
cation on ns2 would be difficult to impossible. Our goal
was to study the performance of the the video player in a
ad hoc wireless network as a function of node movement.

We started with a wireless topology consisting of 50
nodes moving according to the random waypoint move-
ment model, where the maximum random speed was set
to 1 m/s. The nodes in our topology were hosted on
two edge machines, thus each edge node was respon-
sible for 25 VNs. We randomly chose two VNs from
our topology. XAnim was deployed over one of the VN,
while the display was set to the other VN. Communica-
tion between these two nodes ran over the x11 protocol.
The VN executing XAnim would send its packets to the
MobiNet core, which would use DSR to find a route to
the VN hosting the display. The packets were emulated
according to our 802.11 implementation in the MobiNet
core and then sent to the destination VN which would
display the movie. Due to node movement, if existing
routes went stale, DSR was used to find fresh routes to
the destination VN. The video clip was replayed in a con-

Pause time (s) 1 m/s 5 m/s 20 m/s
0 14500 13708 5490
30 15596 13728 13031
60 14927 14565 13207
300 16200 16100 16086

Table 2: x11 packets exchanged between 2 VNs for various
maximum speeds

tinuous fashion for 2 minutes. For lower node mobility
scenarios, packet drops due to broken routes was low and
we observed that the video played in an almost continu-
ous manner. In a highly mobile environment, we found
that the video clip would stall for a while during packet
drops. Once routes were found, the clip would start play-
ing again.Unlike CBR communication, in the x11 com-
munication that takes place between the XAnim nodes,
loss of vital packets due to node movement leads to the
application stalling for a while. We recorded the total
number of XAnim packets exchanged between the two
VNs for different values of pause time and for different
values of maximum speed. We averaged the results over

WitMeMo ’05: International Workshop on Wireless Traffic Measurements and Modeling USENIX Association 11

several runs of the experiment and present them in Ta-
ble 2.

5 Related Work

Zhang and Li [12] have built an infrastructure for testing
mobile ad hoc networks. However, their work does not
support any routing protocol. Furthermore, their scheme
does not restrict application bandwidth, making exper-
imental results inaccurate for a range of important ap-
plication characteristics. Noble and Satyanarayanan [6]
use trace-based network emulation to play back mea-
sured mobile network characteristics to real applications.
Our approach generalizes this technique, allowing users
to generate their own mobility scenarios. Netbed [11]
is a network testbed comprising real mobile nodes us-
ing real mobile hardware and software. In contrast to
our work, Netbed is a real testing environment, not an
emulation or simulation infrastructure. Emwin [13] and
JEmu [2] are network emulators similar to MobiNet.
However, they both do not have the level of scalability
that we have achieved with MobiNet. There is also no
support for plugging in ad hoc routing protocols. Judd
and Steenkiste [4] describe an approach for wireless ex-
perimentation using a real MAC layer. While using a
real MAC layer has advantages, scalability is limited as
discussed above. Comparison between different MAC
layers also becomes more difficult to perform.

6 Conclusions and Future Work

The overall goal of our work is to support controlled ex-
perimentation of a variety of communication patterns,
routing protocols, and MAC layers for emerging ad hoc
and wireless scenarios, including laptops, and PDAs.
Current approaches to such experimentation include sim-
ulation and live deployment. While each clearly has its
relative benefits and will continue to play an important
role in mobile system design and evaluation, this paper
argues for the power of modular, real-time emulation as
another important point in this space.

To this end, this paper presents the design and evalu-
ation of MobiNet, a scalable and accurate emulator for
mobile, wireless and ad-hoc networks. MobiNet pro-
vides accurate mobile and wireless emulation, compar-
ing favorably with existing network simulators while
offering improved scalability. It allows researchers to
rapidly experiment with a variety of MAC, routing, and
communication (layers 2-4) protocols that may not be
easily available in live deployments. MobiNet also sup-
ports the deployment of different mobility and traffic
models. We further show the power of our emulation en-
vironment by running an unmodified video playback ap-
plication communicating across an emulated large-scale

multi-hop 802.11 network using DSR on stock hard-
ware/software.

In most of our experiments, we validated MobiNet
against ns2 to increase our confidence in the accuracy of
our results. We felt that this was an appropriate choice
because ns2, with mobile/wireless extensions, has un-
dergone significant development and validation and re-
mains one of the most popular simulators available. We
leave comparisons against real wireless networks for fu-
ture work. A detailed study of application performance
under different traffic traces is another ongoing effort.

References
[1] J. Broch, D. Maltz, D. Johnson, Y. Hu, and J. Jetcheva. A

Performance Comparison of Multi-Hop Wireless Ad Hoc Net-
work Routing Protocols. In Proceedings of the Fourth Annual
ACM/IEEE International Conference on Mobile Computing and
Networking (MobiCom), October 1998.

[2] J. Flynn, H. Tiwari, and D. O’Mahony. A Real-Time Emulation
System for Ad Hoc Networks. In Proceedings of the Communica-
tion Networks and Distributed Systems Modeling and Simulation
Conference, January 2002.

[3] D. Johnson and D. Maltz. Dynamic Source Routing in ad hoc
wireless networks, Mobile Computing, edited by Tomasz Imielin-
ski and Hank Korth. pages 153–181, 1996.

[4] G. Judd and P. Steenkiste. Repeatable and Realistic Wireless
Experimentation through Physical Emulation. In Proceedings of
HotNets-II, November 2003.

[5] P. Mahadevan, A. Rodriguez, D. Becker, and A. Vahdat. Mobi-
Net: A Scalable Emulation Infrastructure for Ad Hoc and Wire-
less Networks . In Technical Report CS2004-0792, July 2004.

[6] B. Noble, M. Satyananarayanan, G. Nguyen, and R. Katz. Trace-
based Mobile Network Emulation. In Proceedings of SIGCOMM,
September 1997.

[7] V. Park and M. Corson. A highly adaptive distributed routing
algorithm for mobile wireless networks. In Proceedings of IN-
FOCOM’97, April 1997.

[8] C. Perkins. Ad Hoc On Demand Distance Vector(AODV) rout-
ing, Internet-Draft, draft-ietf-manet-aodv-spec-00.txt. November
1997.

[9] C. Perkins and P. Bhagwat. Highly dynamic Destination Se-
quenced Distance-Vector(DSDV) for mobile computers. In Pro-
ceedings of SIGCOMM 94 Conference on Communications Ar-
chitecture, Protocols and Applications, August 1994.

[10] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostić,
J. Chase, and D. Becker. Scalability and Accuracy in a Large-
Scale Network Emulator. In Proceedings of the 5th Symposium
on Operating Systems Design and Implementation (OSDI), De-
cember 2002.

[11] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, Mi Hibler, C. Barb, and A. Joglekar. An Inte-
grated Experimental Environment for Distributed Systems and
Networks. In Proceedings of the 5th Symposium on Operating
Systems Design and Implementation (OSDI), December 2002.

[12] Y. Zhang and W. Li. An integrated environment for testing Mo-
bile Ad-Hoc Networks. In Proceedings of MobiHoc, June 2002.

[13] P. Zheng and L. Ni. EMWIN: Emulating a Mobile Wireless Net-
work using a Wired Network. In Proceedings of WOWMOM,
September 2002.

WitMeMo ’05: International Workshop on Wireless Traffic Measurements and Modeling USENIX Association12

