
USENIX Association

Proceedings of the
5th Smart Card Research and Advanced

Application Conference

San Jose, California, USA
November 21–22, 2002

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Smart Cards in Interaction:
Towards Trustworthy Digital Signatures

Roger Kilian-Kehr Joachim Posegga

SAP AG Corporate Research, CEC Karlsruhe
Vincenz-Priessnitz-Str. 1, D-76131 Karlsruhe, Germany

{roger.kilian-kehr, joachim.posegga}@sap.com

Abstract

We present approaches to raise the security level in
the process of electronic signature creation by shifting
as many tasks as possible involved in digitally signing
data into a tamper-resistant and trustworthy smart card.
We describe the fundamental technical principles our ap-
proach is based on, illustrate resulting design options,
and compare the security of our approach with tradi-
tional electronic signature scenarios.

Keywords:electronic signatures, smart cards.

1 Introduction

The cryptographic underpinnings of electronic signa-
tures such as mathematical one-way functions or public
key cryptography are well understood, and practically se-
cure algorithms and key lengths are widely established.
From this perspective, electronically signing documents
is a straightforward undertaking.

The actual procedure for digitally signing a document
or a transaction, however, is a complex scenario in prac-
tice which involves numerous issues beyond cryptogra-
phy: Since a person who wants to create a digital sig-
nature will usually not carry out the relevant computa-
tion by herself, she needs to delegate this to some appli-
cation running on a platform (device) that can perform
such computations. The security level of the overall sig-
nature creation process therefore depends on the security
of several other, non-cryptographic factors, e.g. the en-
vironment where the document/data presentation takes
place, the security of the communication channel to a
user, or the security properties of the environment where
the cryptographic computations are carried out.

Consider a scenario where a user signs a document
displayed in a Web browser on a PC; at best, this involves

a smart card, where the signing key is stored, and the
cryptographic algorithm to encrypt the document hash
(and other relevant data) is executed within the card. An
attacker who wants to trick the user into signing a fake
document would likely not attack the smart card, but the
environment within it is used (i.e.: the OS, the driver of
the smart card reader, the signing application, the Web
browser, etc.).

The “added value” of a smart card is such a scenario
is, largely, that it makes it hard to compromise the cryp-
tographic key, but the card contributes little to the ac-
tual trustworthiness of an individual digital signature:
The card is used as a tamperproof device that executes
a fixed computational function, i.e., it reads a data block,
encrypts it, and it returns the result. The card itself,
however, does not interact directly with the user (card
holder), but through a mediator like a PC or a mobile
phone. But these devices are usually a lot less secure
that a typical smart card.

This problem is, in theory, easy to solve: Raise the
security level and require a closed, trustworthy system
for applying electronic signatures. Unfortunately, this
solution is extremely hard to roll out in practice, both
because it is expensive and since dedicated hardware,
which would be required, simply does not fit into today’s
computing world.

We propose to take another direction, and build upon
execution platforms that are provided by today’s smart
cards, in particular SIMs and USIMs used for GSM and
UMTS. Such cards offer functionality beyond the “hard-
wired”, secure token that smart cards are mostly fig-
ured: Besides holding a secret key and performing cryp-
tographic algorithms, GSM SIMs and UMTS USIMs in-
clude application platforms (e.g. [7, 15]), that allow pro-
grams that run inside these smart cards to use services of
its host. A mobile phone hosting such a SIM provides I/O
and networking capabilities to the SIM over standardized

protocols [6, 3, 4, 5, 1, 2]. As a result, applications run-
ning inside a SIM can actively initiate and control user
interaction, communicate over the network, etc.

Our paper discusses the various options for enhancing
the security of the process of signing a document by in-
volving a secure execution platform in such a smart card;
essentially we investigate the following question under-
lying such an approach:

How much in terms of security can be ob-
tained, if as much functionality as possible
is shifted from untrusted components into a
trustworthy platform available in a tamper-
resistant device?

Overall, our research provides means for increasing the
trustworthiness of digital signature by imposing less as-
sumptions on the integrity of a card terminal that classic
approaches do.

Paper Outline

The main research contribution of our paper is given
within Sect. 2. After introducing some notational con-
ventions with standard digital signatures in Sect. 2.1, we
investigate basic, on-card hash computation in Sect. 2.2.
Section 2.3 extends this by involving a trusted third party.
A third approach integrating the identity of the docu-
ment’s originator into the signature protocol is presented
in Sect. 2.4. Although all the approaches are vulnerable
to so-called “conspiracy attacks” they represent signifi-
cant improvements in the overall security of an electronic
signature creation process.

Based on the results of the previous approaches
Sect. 2.5 proposes to digitally sign user interactions trig-
gered by scripts that run inside smart cards to enable
the comfortable, application-driven creation of electronic
signatures on mobile devices.

Section 3 compares our work to related approaches,
and we finally wrap-up our work in Sect. 4.

2 Smarter Signing with Smart Cards

This section explores several options for implement-
ing the process of digitally signing documents by tak-
ing advantage of secure application platforms in smart
cards: We discuss the security benefits of moving more
and more of the required computation into the secure en-
vironment of a card.

As the starting point, consider the “traditional” pro-
cedure, where smart cards are used as crypto tokens
holding a secret key and providing an implementation of
cryptographic algorithms.

2.1 Basic Electronic Signature Protocol

The most important roles in scenarios for electronic
signature creation are the signerS owning a public key
pair (SS , PS), the document to be signedD, the signa-
ture creation applicationA, a document viewerV inter-
acting with the signer, a smart cardC, and the originator
O of the documentD. The basic protocol is as follows:

(1) O → A : {D}
(2) A → V, S : {D}
(3) S, V → A : accept/reject
(4) A → C : {h(D)}
(5) C → A → O : {sigSS

(
h(D)

)
}

Here, (1) denotes the document transfer from the origi-
nator to the signature creation application, (2) the docu-
ment presentation, (3) the signer’s interaction/choice, (4)
the hash computation, and (5) the signing process.

The above procedure can be improved w.r.t. security
when moving some of these individual steps partially
into the secure environment of a smart card. First we
consider on-card hash computation.

2.2 Electronic Signatures with On-Card Hash
Computation

The computation of the hash function is certainly a
possible target for an attacker who wants to manipulate a
signing procedure; but performing the hash computation
inside a trusted device such as a smart card itself is not
a panacea: it is important how the document presenta-
tion and hash computation is done in the overall signa-
ture protocol. Consider for example the following case:

(1) A → C : {D}
(2) C → A : {sigSS

(
h(D)

)
}

In this case, (1) denotes the document transfer to the
smart card and (2) the document signing process. From
a security point of view an intruderI who is in control of
A can easily exchange documentD with another docu-
mentD′ which is subsequently sent to the card, hashed,
and finally signed. Hence, compared with the basic pro-
tocol, no additional benefit can be gained from moving a
hash computation into a card in a straightforward way.

On-Card Hash Computation Protocol

Assuming a scenario in which the signature creation
applicationA is located in a security moduleC, and the
viewer in a (less trustworthy) terminal a possible proto-
col is as follows:

(1) O → A : {D}
(2) A → V, S : {D}
(3) S, V → A : accept/reject
(4) C,A → O : {sigSS

(
h(D)

)
}

Here, (1) denotes the document transfer to the applica-
tion being hosted by the smart card, (2) the document
presentation, (3) the user’s choice, and (4) the hash and
signature computation in the card.

Assuming end-to-end secure communication between
O andA/C, an intruder is not able to control the hash
computation anymore. Only the document presentation
and the user’saccept/responsecould be manipulated, al-
though the intruder controllingV cannot gain anything
from such manipulation, except by mounting the follow-
ing attack.

A Conspiracy Attack on On-Card Hash Compu-
tation

• The intruderI and the originatorO cooperate.

• O sends the documentD′, i.e., the document
which the attackers want to be signed byS.

• Upon invocation ofV , I presents a fake document
D, whichS might accept for signing.

• In the card,D′ is signed and sent back toO.

Hence, an attack is still possible, if the intruder subvert-
ing V and the originatorO of the document directly co-
operate. Although this attack is of general importance,
practically, it means that it is not sufficient anymore to
attack the user’s terminal only, but also to manage to
actively send a faked document which the user subse-
quently signs.

As a consequence, shifting the hash computation in
the above manner to a tamper-resistant device seems to
give a substantial improvement in the overall security of
the signature creation process.

2.3 Electronic Signatures Assisted by a Trusted
Third Party

On-card hash computation is often not feasible, e.g.
due to the limited bandwith one can use when commu-
nicating with a smart card. The process of computing
hashes can, however, also be delegated to a trusted third
partyT as the following protocol outlines. A URLurlD
is used to denote some resource whereD can be fetched
from. The trusted third partyT then computesD’s hash
on behalf ofA and signs it. A just forwards the URL
to the document viewerV and the further protocol steps
are the same as in the on-card hash computation protocol

(cf. Sect. 2.2).

(1) O → A : {urlD}
(2) A → T : {urlD}
(3) T → A : {sigT

(
h(D)

)
}

(4) A → V, S : {urlD}
(5) S, V → A : accept/reject
(6) A → C : {sigT

(
h(D)

)
}

(7) C → A → O : {sigSS

(
h(D)

)
}

In this protocol, (1) denotes the transmission of the URL
under which the document to be signed is located to the
application, (2) passing the URL to the TTP, (3) TTP
fetches document and computes the hash, (4) represents
the document presentation to the user, (5) the user’s
choice, (6) pass-through of the TTP’s signature to the
card and verification the the signature, and (7) the final
signature computation by the smart card.

Similar to the on-card hash computation protocol, it is
vulnerable to a conspiracy attack as described above.

2.4 Electronic Signatures with Recipient Ad-
dressing

Looking at the traditional signature creation proto-
col it becomes obvious that authenticity of a document
sender is not of particular concern. In electronic business
processes, however, signatures are often used to provide
the technical means for contracts between two parties.
Although the identities of the contract partners are usu-
ally somehow denoted in the documentD, this is by no
means cryptographically protected.

To improve the signature process further, we include
the cryptographic identity of the document originator
into the signature process. In particular we propose the
following protocol which is based on the on-card hash
computation protocol (cf. Sect. 2.2) and the public key
pair (SO, PO) of the originatorO denoted byidO:

(1) O → A : {D, sigSO
(D)}

(2) A → V, S : {D, idO}
(3) S, V → A : accept/reject
(4) C,A → O : {sigSS

(
h(D), sigSO

(D)
)
}

Here, (1) denotes the document and signature transmis-
sion, (2) the presentation of the document and the iden-
tity of the originator, (3) the user’s choice, and (4) the
final hash and signature computation.

This protocol now achieves that an electronic signa-
ture is created over both – the cryptographic hash of the
document and the identity of the recipient or originator
of the signature.

To assess the advantages of this approach consider
that in a traditional signature attack scenario an in-
truder could “hijack” the signing process of an arbi-
trary documentDO with its intended recipientO to

infiltrate another documentD′ to be signed. The in-
truder I could then claim that the user has signed this
document which is likely of advantage to the intruder.
In the above protocol, however, the intruderI is not
able to obtain a signaturesigSS

(
h(D′), sigSI

(D′)
)

since
the signaturesigSI

(D′) cannot be generated. At best
sigSS

(
h(D′), sigSO

(D′)
)

could be obtained, but lead-
ing to a contradiction between the information available
in D′ denotingI as the recipient and the envelope sig-
naturesigSO

. Therefore, we argue that linking the docu-
ment and the recipient in the signature gives advantages
to standard electronic signature creation.

Basically, the same conspiracy attack presented in the
on-card hash computation in Section 2.2 can be mounted
in the recipient addressing scheme. Again, if originator
O and intruderI cooperate, the user is not able to distin-
guish that signature creation occurs with a document that
she does not intend to sign.

2.5 Electronic Signatures on Interactions

We have so far considered electronic signatures on
standard clients, e.g. desktop PCs. One of the most prob-
lematic issues with electronic signatures on mobile de-
vices is the fact that such signatures are computed over
complex documents. In particular this means that ac-
cording to current signature laws, e.g. those in Germany,
the document must be presented to the user who then ei-
ther accepts or rejects the subsequent signature creation.
Hence, a document to be signed must be presented as a
whole in a suitably rendered fashion, which is often dif-
ficult on small, mobile devices. The problem of encod-
ing and subsequently displaying a document in a repro-
ducible and standardized way has been extensively dis-
cussed by Scheibelhofer [13]. In his approach he uses
XML style sheets defining mappings to a possibly certi-
fied rendering engine.

To tackle this presentation problem, we consider not
only the presentation of a document but also the way the
document is created. We argue that a document is often
the result of some kind of interaction between a service
provider, e.g. who offers goods, and a client who selects
goods to buy. Finally, after all selections are made, a doc-
ument containing the complete list of goods is presented
and signed accordingly.

If such an interaction “document” is encoded as an ex-
ecutable script, the execution of the script isdeterministic
as long as allnon-deterministicinput which is received
from “outside” the script such as user input, random
number generator, persistent variables, etc. is recorded.
A “document” over which the signature is computed is
then comprised of

(a) the executed script,

(b) the persistent state used during the computation,

(c) all user input,

(d) all messages received from other communication
channels,

(e) the current time and progress of execution,

(f) some platform characteristics such as version
numbers, serial numbers, etc.

The signature can be easily verified by executing the
script in a simulated environment using the recorded and
signed input values. Thus, a signed document in this
sense is not intended to be human-readable, but rather
meant to record and log the interaction that happened be-
tween a service provider and a user.

A Smart Card Platform for Mobile Code

More concretely, we propose to use a secure platform
for the execution of (remote) code in a smart card which
functions as follows:

• The smart card implements an interpreter for mo-
bile code written in a domain-specific language
optimally supporting the intended application do-
main.

• A client such as a service provider sends messages
containing so-calledscriptswritten in the domain-
specific language the card-resident interpreter un-
derstands.

• The card’s runtime platform executes the script,
handles user interaction, and sends back the re-
sponses to the client.

• The platform implements key management facil-
ities in order to provide end-to-end security be-
tween the client and the smart card.

Such a platform must besecurein the sense that neither
the mobile code nor the user is able to harm the plat-
form’s integrity. Furthermore, the platform gives certain
guarantees to both – code and user – that the scripts are
executed as intended and no information leakage or se-
cret storage manipulation can occur by malicious code or
an external attacker.

Thus, the platform acts as atrusted computing base
running in a tamper-resistant device protecting the user
from the code and vice versa.

1 script {
2
3 provider "bidbiz.com";
4 name "bidbiz auction client";
5 id "20011223/24357";
6 options signed-interaction;
7
8 implementation {
9 playtone;

10 push("News from bidbiz.com:\nBid in auction #3576 (Antique watch): EUR 63.");
11 display;
12
13 push(mark);
14 push("Place new bid?");
15 push("New bid...");
16 push("Cancel");

17 select; ←− User selects option: (int ,‘1’)

18
19 push(2);
20 eq?;
21 if (true) goto end;
22
23 enter:
24 push("Enter new bid (>EUR 63):");

25 input; ←− User inputs new bid amount: (string ,‘70 ’)

26 dup();
27 push(63);
28 le?;
29 if (true) goto end:
30 playtone;
31 push("Please enter a bid greater than EUR 63.");
32 display;
33 goto enter;
34
35 end: sign-interaction;
36 response;
37 exit;
38 }
39 }

Figure 1. Mobile auction client with interaction signatures

Example: Mobile Auctions

For illustration purposes we provide an example illus-
trating our approach in the domain of mobile auctions
(Fig. 1). This example is based on the one presented in
[8], however, it has been extended to support the creation
of signatures on user interaction.

The given example illustrates the use of the stack-
based domain-specific language we use to write our
scripts without going into full detail. An in-depth de-
scription of the language can be found in [10].

A script starts with header information about the name
of the script and its provider (lines 3–5). Line 6 denotes
that the script’s execution should be implicitly signed by
the interpreter. Theimplementation part (line 7)
contains the actual program.

Lines 9–12 demonstrate how to display an initial

message about the latest news of the online auction.
Lines 14–18 show how the arguments for a user selection
(primitive select) are pushed onto the stack marked by
the initial marker set in line 14. After the selection has
been performed the arguments including the marker are
removed from the stack and the number of the selected
item is available on the stack.

Lines 20–22 check, whether the subscriber selected
item no. 2 (i.e. “Cancel”) in which case a jump to the
label ‘end ’ is performed. Otherwise an input dialog
is opened in lines 25–26 and the input from the sub-
scriber is returned on the topmost stack position and du-
plicated in line 27. Then the entered amount is checked
in lines 28–30, whether its is greater than 64. Otherwise
a text is displayed in lines 31–33 and execution resumes
to the input dialogue (label ‘enter ’).

Finally, in line 36, the whole recorded execution of the

script is signed and a signature object containing all the
relevant information about the script’s execution includ-
ing the signature is pushed onto the stack. The signature
object is then sent back to the originator in line 37 and
execution terminates.

During execution the runtime environment collects
the non-deterministic input from the various sources into
a logL = {i1, . . . , in} of inputsij . In the above example
execution thus yields

L = {(int , ‘1’), (string , ‘70 ’)},

i.e., for each input we record the type information and
the data. The overall interactive log of an execution of
scriptP with the identifieridP is computed and returned
together with additional platform informationR to the
original senderS as follows:

C → S :
{
idP , L,R, sigSC

(
hash(idP , P, L, R)

)}
.

The receiver must be able to verify the authenticity of
the signature by simulating the execution of the script
according to the logL. Based on this simulation, the in-
teraction of the script and the user can be replayed and
the user’s choices and inputs can be examined to take ap-
propriate action.

The execution of the script should occur in a trans-
actional context, i.e. if for some reason the execution is
terminated, no signature is created.

Summary

Using signatures on runtime execution audits com-
bined with recording user interactions as a means to im-
plement non-repudiation is, to the best of our knowledge,
a novel approach. We consider this approach particularly
useful for our application domain for the following rea-
sons:

• Due to the lack of user input and output facilities,
performing all possible executions within the trust
domain of the smart card is from a security point
of view desirable.

• All interaction which leaves the trust boundary of
the smart card is reduced to the bare minimum, i.e.
to user interactions only.

• The approach is very flexible, since it offers scripts
a full control over the way signatures are built,
how encryption is performed, and how interaction
takes place. As such it is able to offer applications
means to implement security policies as needed.

Thus, our approach allows to take full advantage of the
smart card as an open platform for running security-
critical applications in the tamper-resistant context of the

physical device. More precisely, it represents one in-
stance of the on-card hash computation approach as pre-
sented in Sect. 2.2. Furthermore, it can be easily ex-
tended to also support the third-party assisted approach
in Sect. 2.3 and the recipient addressing approach in
Sect. 2.4 assuming available key management facilities
as described in [10].

3 Related Work

The main contribution of our research is in increasing
the trustworthiness of digital signatures by building as
much as possible on the security properties of execution
platforms in smart cards.

Alternatively, one can try to enhance the trustworthi-
ness of devices; [11, 12] discuss portable end-user de-
vices (POBs) and security modules and define a num-
ber of requirements to be made for such devices. They
observe that trustworthy POBs do not exist and con-
clude that therefore the development of secure applica-
tions should concentrate on protocols and procedures. A
related approach is, e.g. described in [9] that comprises
two different devices, a PDA and a smart card, that to-
gether implement a security-sensitive application: the
smart card does not perform its task without the PDA
and the PDA cannot perform the task without the help of
the smart card.

One of the key ideas of this paper is documenting
user interaction involved with digital signatures; a suit-
able, lightweight scripting language suitable for on-the-
fly download to smart cards has been proposed in [8, 10].

The actual runtime execution monitoring using an ex-
ecution log has been investigated by Vigna as a means
to protect the execution of mobile agents in hostile en-
vironments [14]. The sender of a mobile agent can use
this signed execution log to verify whether the agent has
been tampered with while executing on a remote agent
platform.

4 Conclusion

Starting from the observation that the process of elec-
tronic signature creation is still vulnerable in many prac-
tical settings, we have proposed three protocol variants
that aim at shifting functionality from untrusted compo-
nents into a smart card.

The first option considers on-card hash computation
combined with end-to-end secure transfer of the docu-
ment to be signed from the originator to the smart card.
Another approach uses a trusted third party to perform
resource-intensive computation of the document’s hash
outside the card. The third approach is characterized by
the integration of identity of the document’s originator

into the protocol eliminating further attacks. However,
so-called “conspiracy attacks” in which an intruder and
an originator cooperate are still, yet less easily, mount-
able.

Based on the new protocols a novel approach for the
creation of electronic signatures based on a runtime exe-
cution platform for smart cards has been presented. This
approach is able to include the different protocol options
presented and is especially suited for use in mobile set-
tings characterized by the limited device capabilities in
terms of user input and output. We have illustrated our
approach with an example in the domain of mobile auc-
tions – an application that is ideally suited to be run on
mobile phones.

Generally, we suggest that GSM SIMs and UMTS
USIMs might be ideal candidates for hosting such a
smart card platform. Our results demonstrate that im-
provements in the electronic signature creation process
are feasible if the environment the creation takes place is
suitably taken into consideration.

References

[1] 3rd Generation Partnership Project.3GPP TS 31.112
V5.0.0 (2001-09) Technical Specification 3rd Generation
Partnership Project; Technical Specification Group Ter-
minals; USIM Application Toolkit (USAT) Interpreter Ar-
chitecture Description (Release 5), Sept. 2001. Available
athttp://www.3gpp.org.

[2] 3rd Generation Partnership Project.3GPP TS 31.113
V5.0.0 (2001-09) Technical Specification 3rd Generation
Partnership Project; Technical Specification Group Ter-
minals; USAT Interpreter Byte Codes (Release 5), Sept.
2001. Available athttp://www.3gpp.org.

[3] European Telecommunication Standardization Institu-
tion (ETSI). Digital cellular telecommunications system
(Phase 2+); Security Mechanisms for the SIM applica-
tion toolkit; Stage 2 (GSM 03.48 version 8.1.0 Release
99), Nov. 1999.

[4] European Telecommunication Standardization Institu-
tion (ETSI), Sophia Antipolis, France.Digital cellu-
lar telecommunications system (Phase 2+, Release 98):
Subscriber Identity Module Application Programming
Interface (SIM API); Service description; Stage 2 (GSM
02.19 version 7.0.0 Release 1998), 2000.

[5] European Telecommunication Standardization Institu-
tion (ETSI), Sophia Antipolis, France. Digital cel-
lular telecommunications system (Phase 2+): Sub-
scriber Identity Module Application Programming Inter-
face (SIM API); SIM API for Java Card; Stage 2 (GSM
03.19 version 7.1.0, Release 1998), 2000.

[6] European Telecommunications Standard Institute.Dig-
ital cellular telecommunications system (Phase 2+);
Specification of the SIM Application Toolkit for the Sub-
scriber Identity Module – Mobile Equipment (SIM–ME)
interface (GSM 11.14), 1998.

[7] Java Card Technology. Specifications are available at
http:// java.sun.com/products/ javacard/.

[8] R. Kehr and H. Mieves. SIMspeak: Towards an open and
secure platform for GSM SIMs. In I. Attali and T. Jensen,
editors,Proceedings of International Conference on Re-
search in Smart Cards: Smart Card Programming and
Security, E-smart 2001, Cannes, France,, volume 2140
of Lecture Notes in Computer Science. Springer-Verlag,
September, 19–21 2001.

[9] R. Kehr, J. Posegga, and H. Vogt. PCA: Jini-based
Personal Card Assistant. In R. Baumgart, editor,Pro-
ceedings of Secure Networking – CQRE [Secure]’99,
Düsseldorf, Germany, volume 1740 ofLecture Notes
in Computer Science, pages 64–75. Springer-Verlag,
November 30 – December 2, 1999.

[10] R. Kilian-Kehr. Mobile Security with Smartcards. PhD
thesis, Darmstadt University of Technology, May 2002.

[11] A. Pfitzmann, B. Pfitzmann, M. Schunter, and M. Waid-
ner. Vertrauensẅurdiger Entwurf portabler Be-
nutzerendgeräte und Sicherheitsmodule. InProceedings
of Verläßliche Informationssysteme VIS’95, pages 329–
350. Vieweg, 1995.

[12] A. Pfitzmann, B. Pfitzmann, M. Schunter, and M. Waid-
ner. Mobile user devices and security modules: Design
for trustworthiness. Technical Report RZ 2784 (#89262),
IBM Research Division, Zurich, May 1996.

[13] K. Scheibelhofer. What you see is what you sign. In
Proceedings of IFIP conference on Communications and
Multimedia Security (CMS ’2001), Darmstadt, Germany,
May 21–22, 2001.

[14] G. Vigna. Cryptographic traces for mobile agents. In
G. Vigna, editor,Mobile Agents and Security, volume
1419 of Lecture Notes in Computer Science. Springer-
Verlag, June 1998.

[15] Windows for Smartcards. www.microsoft.com/
smartcard/.

